Colorectal cancer (CRC) is one of the most common cancer worldwide. Chronic inflammation contributes to CRC development and progression. Emodin, is a natural anthraquinone derivative with anti-oxidant, anti-inflammatory, and anti-tumor activities. We used the AOM/DSS model of colitis-associated intestinal tumorigenesis to characterize the effect of Emodin on inflammation and tumorigenesis at weeks 3, 5, and 14 after initiation with AOM. At all three time points, Emodin (50 mg/kg) reduced inflammatory cell (i.e. CD11b+ and F4/80+) recruitment, cytokine (i.e. TNFα, IL1α/β, IL6, CCL2, CXCL5) and pro-inflammatory enzymes (i.e. COX-2, NOS2) expression in the tumor microenvironment, while promoting recruitment of CD3+ T lymphocytes at 14 weeks. Emodin decreased the incidence of premalignant lesions (adenoma) at week 3, the incidence of dysplastic lesions and carcinomas at week 5, and the incidence, size and the invasiveness of carcinomas at week 14. Emodin also reduced the acute clinical intestinal symptoms (i.e. bleeding and diarrhea) during DSS treatment. In vitro, Emodin inhibited the expression of pro-inflammatory mediators by LPS-stimulated RAW 264.7 macrophages, and reduced viability, adhesion, migration, and fibroblasts-induced invasion of SW620 and HCT116 colon cancer cells. In conclusion, this work demonstrates that Emodin suppresses carcinogenesis-associated intestinal inflammation and prevents AOM/DSS-induced intestinal tumorigenesis and progression. These results instigate further studies on Emodin as a natural agent for the prevention or treatment of colorectal cancer.
Colorectal cancer (CRC) is the third cause of cancer-related mortality in industrialized countries. Local invasion and metastasis formation are events associated with poor prognosis for which today there are no effective therapeutic options. Invasion and metastasis are strongly modulated by cells of the tumor microenvironment (TME), in particular fibroblasts and endothelial cells. Unraveling interactions between tumor cells and cells of the TME may identify novel mechanisms and therapeutic targets to prevent or treat metastasis. We report here the development and in vivo validation of a 3D tumor spheroid model to study the interactions between CRC cells, fibroblasts and endothelial cells in vitro. Co-cultured fibroblasts promoted SW620 and HCT116 CRC spheroid invasion, and this was prevented by the SRC and FGFR kinase inhibitors Dasatinib and Erdafitinib, respectively. To validate these findings in vivo, we injected SW620 cells alone or together with fibroblasts orthotopically in the caecum of mice. Co-injection with fibroblasts promoted lung metastasis growth, which was fully reversed by treatment with Dasatinib or Erdafitinib. Co-culture of SW620 or HCT116 CRC spheroids with endothelial cells suppressed spheroid growth while it had no effect on cancer cell migration or invasion. Consistent with this in vitro effect, co-injected endothelial cells significantly inhibited primary tumor growth in vivo. From these experiments we conclude that effects on cancer cell invasion and growth induced by co-cultured TME cells and drug treatment in the 3D spheroid model in vitro, are predictive of in vivo effects. The 3D spheroid model may be considered as an attractive model to study the effect of heterotypic cellular interactions and drug activities on cancer cells, as animal testing alternative. This model may be adapted and further developed to include different types of cancer and host cells and to investigate additional functions and drugs.
BackgroundWhether bevacizumab exerts its anti-tumor properties through systemic effects beyond local inhibition of angiogenesis and how these effects can be monitored in patients, remain largely elusive. To address these questions, we investigated bone marrow-derived cells and cytokines in the peripheral blood of metastatic breast cancer patients undergoing therapy with bevacizumab.MethodsCirculating endothelial cells (CEC), circulating endothelial progenitor (CEP) and circulating CD11b+ cells in metastatic breast cancer patients before and during therapy with paclitaxel alone (n = 11) or in combination with bevacizumab (n = 10) were characterized using flow cytometry, real time PCR and RNASeq. Circulating factors were measured by ELISA. Aged-matched healthy donors were used as baseline controls (n = 12).ResultsBreast cancer patients had elevated frequencies of CEC, CEP, TIE2+CD11b+ and KIT+CD11b+ cell subsets. CEC decreased during therapy, irrespective of bevacizumab, while TIE2+CD11b+ remained unchanged. KIT+CD11b+ cells decreased in response to paclitaxel with bevacizumab, but not paclitaxel alone. Cancer patients expressed higher mRNA levels of the M2 polarization markers CD163, ARG1 and IL-10 in CD11b+ cells and increased levels of the M2 cytokines IL-10 and CCL20 in plasma. M1 activation markers and cytokines were low or equally expressed in cancer patients compared to healthy donors. Chemotherapy with paclitaxel and bevacizumab, but not with paclitaxel alone, significantly decreased IL-10 mRNA in CD11b+ cells and IL-10 protein in plasma.ConclusionsThis pilot study provides evidence of systemic immunomodulatory effects of bevacizumab and identified circulating KIT+CD11b+ cells and IL-10 as candidate biomarkers of bevacizumab activity in metastatic breast cancer patients.
Background Advanced breast cancer (BC) impact immune cells in the blood but whether such effects may reflect the presence of early BC and its therapeutic management remains elusive. Methods To address this question, we used multiparametric flow cytometry to analyze circulating leukocytes in patients with early BC (n = 13) at the time of diagnosis, after surgery, and after adjuvant radiotherapy, compared to healthy individuals. Data were analyzed using a minimally supervised approach based on FlowSOM algorithm and validated manually. Results At the time of diagnosis, BC patients have an increased frequency of CD117+CD11b+ granulocytes, which was significantly reduced after tumor removal. Adjuvant radiotherapy increased the frequency of CD45RO+ memory CD4+ T cells and CD4+ regulatory T cells. FlowSOM algorithm analysis revealed several unanticipated populations, including cells negative for all markers tested, CD11b+CD15low, CD3+CD4−CD8−, CD3+CD4+CD8+, and CD3+CD8+CD127+CD45RO+ cells, associated with BC or radiotherapy. Conclusions This study revealed changes in blood leukocytes associated with primary BC, surgical removal, and adjuvant radiotherapy. Specifically, it identified increased levels of CD117+ granulocytes, memory, and regulatory CD4+ T cells as potential biomarkers of BC and radiotherapy, respectively. Importantly, the study demonstrates the value of unsupervised analysis of complex flow cytometry data to unravel new cell populations of potential clinical relevance.
Background: Advanced breast cancer (BC) impact immune cells in the blood but whether such effects may reflect the presence of early BC and its therapeutic management remains elusive. Methods: To address this question, we used multiparametric flow cytometry to analyse circulating leukocytes in patients with early BC (n=13) at time of diagnosis, after surgery and after adjuvant radiotherapy, compared to healthy individuals. Data were analysed using a minimally supervised approach based on FlowSOM algorithm and validated manually. Results: At time of diagnosis, BC patients have an increased frequency of CD117+ Granulocytic-Myeloid Derived Suppressor Cells (G-MDSC), which was significantly reduced after tumor removal. Adjuvant radiotherapy increased the frequency of CD45RO+ memory CD4+ T cells and CD4+ regulatory T cells. FlowSOM algorithm analysis revealed several unanticipated populations, including cells negative for all markers tested, CD11b+CD15low, CD3+CD4-CD8-, CD3+CD4+CD8+, CD3+CD8+CD127+CD45RO+ cells, associated with BC or radiotherapy. Conclusions: This study revealed changes in blood leukocytes associated with primary BC, surgical removal and adjuvant radiotherapy. Specifically, it identified increased levels of CD117+ G-MDSC, memory and regulatory CD4+ T cells as potential biomarkers of BC and radiotherapy, respectively. Importantly, the study demonstrates the value of unsupervised analysis of complex flow cytometry data to unravel new cell populations of potential clinical relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.