<span>The use of slang (non-standard language), especially in social media, is increasing. It causes reducing the level of understanding when communicating because not everyone understands slang (non-standard language). The purpose of this work is to develop a slang-word translator. The other objective is to find the minimum number of sentences and </span><span>BiLingual Evaluation Understudy</span><span> (BLEU) score used as a benchmark to determine that the translation is understandable. The approach used in this project is a Phrase-based statistical machine translation (PBSMT) approach, suitable for low resource language, with a dataset of 100,000 sentences taken from the comments column of several online political news portals. The comments are then manually translated to produce a parallel corpus of non-standard language-standard language. The sample sentences are taken from the dataset then distributed using questionnaires to obtain the human understanding level regarding the translation result. The result of the implementation is a BLEU score of 64 and the minimum number of sentences to have an understandable machine translation is 500. The conclusion drawn from the distributed questionnaires is that humans can understand the sentences produced by the translation machine.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.