Although a wide range of risk factors for coronary heart disease have been identified from population studies, these measures, singly or in combination, are insufficiently powerful to provide a reliable, noninvasive diagnosis of the presence of coronary heart disease. Here we show that pattern-recognition techniques applied to proton nuclear magnetic resonance (1H-NMR) spectra of human serum can correctly diagnose not only the presence, but also the severity, of coronary heart disease. Application of supervised partial least squares-discriminant analysis to orthogonal signal-corrected data sets allows >90% of subjects with stenosis of all three major coronary vessels to be distinguished from subjects with angiographically normal coronary arteries, with a specificity of >90%. Our studies show for the first time a technique capable of providing an accurate, noninvasive and rapid diagnosis of coronary heart disease that can be used clinically, either in population screening or to allow effective targeting of treatments such as statins.
Background-Myocyte necrosis as a result of elective percutaneous coronary intervention (PCI) occurs in approximately one third of cases and is associated with subsequent cardiovascular events. This study assessed the ability of remote ischemic preconditioning (IPC) to attenuate cardiac troponin I (cTnI) release after elective PCI. Methods and Results-Two hundred forty-two consecutive patients undergoing elective PCI with undetectable preprocedural cTnI were recruited. Subjects were randomized to receive remote IPC (induced by three 5-minute inflations of a blood pressure cuff to 200 mm Hg around the upper arm, followed by 5-minute intervals of reperfusion) or control (an uninflated cuff around the arm) before arrival in the catheter laboratory. The primary outcome was cTnI at 24 hours after PCI. Secondary outcomes included renal dysfunction and major adverse cardiac and cerebral event rate at 6 months. The median cTnI at 24 hours after PCI was lower in the remote IPC compared with the control group (0.06 versus 0.16 ng/mL; Pϭ0.040). After remote IPC, cTnI was Ͻ0.04 ng/mL in 44 patients (42%) compared with 24 in the control group (24%; Pϭ0.01). Subjects who received remote IPC experienced less chest discomfort (Pϭ0.0006) and ECG ST-segment deviation (Pϭ0.005) than control subjects. At 6 months, the major adverse cardiac and cerebral event rate was lower in the remote IPC group (4 versus 13 events; Pϭ0.018). Conclusion-Remote IPC reduces ischemic chest discomfort during PCI, attenuates procedure-related cTnI release, and appears to reduce subsequent cardiovascular events. (Circulation. 2009;119:820-827.)
VH-IVUS TCFA was associated with nonrestenotic and total MACE on individual plaque analysis, and noncalcified VHTCFA was associated with nonrestenotic and total MACE on whole-patient analysis, demonstrating that VH-IVUS can identify plaques at increased risk of subsequent events. The preservation of the association between VHTCFA and MACE despite various analyses emphasizes its biological importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.