IntroductionThe main objective was to carry out a global DNA methylation analysis in a population with gender incongruence before gender-affirming hormone treatment (GAHT), in comparison to a cisgender population.MethodsA global CpG (cytosine-phosphate-guanine) methylation analysis was performed on blood from 16 transgender people before GAHT vs. 16 cisgender people using the Illumina© Infinium Human Methylation 850k BeadChip, after bisulfite conversion. Changes in the DNA methylome in cisgender vs. transgender populations were analyzed with the Partek® Genomics Suite program by a 2-way ANOVA test comparing populations by group and their sex assigned at birth.ResultsThe principal components analysis (PCA) showed that both populations (cis and trans) differ in the degree of global CpG methylation prior to GAHT. The 2-way ANOVA test showed 71,515 CpGs that passed the criterion FDR p < 0.05. Subsequently, in male assigned at birth population we found 87 CpGs that passed both criteria (FDR p < 0.05; fold change ≥ ± 2) of which 22 were located in islands. The most significant CpGs were related to genes: WDR45B, SLC6A20, NHLH1, PLEKHA5, UBALD1, SLC37A1, ARL6IP1, GRASP, and NCOA6. Regarding the female assigned at birth populations, we found 2 CpGs that passed both criteria (FDR p < 0.05; fold change ≥ ± 2), but none were located in islands. One of these CpGs, related to the MPPED2 gene, is shared by both, trans men and trans women. The enrichment analysis showed that these genes are involved in functions such as negative regulation of gene expression (GO:0010629), central nervous system development (GO:0007417), brain development (GO:0007420), ribonucleotide binding (GO:0032553), and RNA binding (GO:0003723), among others.Strengths and LimitationsIt is the first time that a global CpG methylation analysis has been carried out in a population with gender incongruence before GAHT. A prospective study before/during GAHT would provide a better understanding of the influence of epigenetics in this process.ConclusionThe main finding of this study is that the cis and trans populations have different global CpG methylation profiles prior to GAHT. Therefore, our results suggest that epigenetics may be involved in the etiology of gender incongruence.
STUDY QUESTION Does gender-affirming treatment prevent full spermatogenesis in transgender women (TW)? SUMMARY ANSWER Adequate hormonal therapy (HT) leads to complete suppression of spermatogenesis in most TW, if serum testosterone levels within female reference ranges are obtained. WHAT IS KNOWN ALREADY Gender-affirming treatment in transgender individuals may involve gender-affirming HT. The effects on spermatogenesis in TW remain unclear. In order to add information from a referral centre for transgender care, we wish to compare results of earlier studies with our population of TW who received a standard hormone treatment. STUDY DESIGN, SIZE, DURATION This was a prospective cohort study part of the European Network for the Investigation of Gender Incongruence (ENIGI), conducted between 15 February 2010 and 30 September 2015. There were 162 TW were included in the ENIGI study at the Ghent University Hospital in Belgium. Participants are included in ENIGI when they first start HT, and follow-up visits occur over the next 3 years. PARTICIPANTS/MATERIALS, SETTING METHODS The study included 97 TW who initiated HT with cyproterone acetate (CPA) plus oestrogens and proceeded with gonadectomy at the Ghent University Hospital. Testicular tissue retrieved during gonadectomy was processed and stained for four different germ cell markers by the Biology of the Testis lab at the Vrije Universiteit Brussel. Subsequent immunohistochemical staining was performed for melanoma-associated antigen A4 (MAGE-A4, marker for spermatogonia and early spermatocytes), boule homologue, RNA-binding protein (BOLL, marker for secondary spermatocytes and round spermatids), cAMP-responsive element modulator (CREM, marker for round spermatids) and acrosin (marker for acrosome visualization). Serum levels of sex steroids were measured prior to surgery. MAIN RESULTS AND THE ROLE OF CHANCE Suppressed testosterone levels (<50 ng/dl) were found in 92% of the participants prior to surgery. The mean time between initiation of HT and surgery was 685 days. In 88% (85/97) of the sections, MAGE-A4 staining was positive. Further staining could not reveal complete spermatogenesis in any participant. LIMITATIONS, REASONS FOR CAUTION Testicular function of the participants prior to initiation of HT was not assessed, although all participants presented with cisgender male serum testosterone values before initiation of HT. The current study only reports on people using CPA at a fixed dose and may therefore not be applicable to all TW. WIDER IMPLICATIONS OF THE FINDINGS HT leads to complete suppression of spermatogenesis in most TW, if serum testosterone levels within female reference ranges are obtained. Serum testosterone levels are associated with the sperm maturation rate. It is important to discuss sperm preservation before the start of hormone therapy. If serum testosterone levels remain higher, spermatogenesis may still occur. STUDY FUNDING/COMPETING INTEREST(S) D.V.S. is a post-doctoral fellow of the Fonds Wetenschappelijk Onderzoek (FWO; 12M2819N). Processing of the testis specimens was funded by the Biology of The Testes (BITE) research group (Department of Reproduction, Genetics and Regenerative medicine at Vrije Universiteit Brussel (VUB)). There are no competing interests. TRIAL REGISTRATION NUMBER N/A.
Background: Previous studies have cross-sectionally described amenorrhea in cohorts of transgender men on intramuscular or subcutaneous testosterone injections. It remains uncertain which testosterone preparations most effectively suppress vaginal bleeding and when amenorrhea occurs after testosterone initiation. Aim:To investigate the clinical effects of various testosterone preparations on vaginal bleeding and spotting in transgender men. Methods: This prospective cohort study was part of the European Network for the Investigation of Gender Incongruence (ENIGI). Data on the persistence and intensity of vaginal bleeding and spotting, serum sex steroid levels and body composition were prospectively and cross-sectionally assessed in 267 transgender men during a three-year follow-up period, starting at the initiation of various testosterone preparations. Results: After three months of testosterone, 17.9% of transgender men reported persistent vaginal bleeding and 26.8% reported spotting. The percentages reporting vaginal bleeding and spotting decreased over the first year of testosterone (bleeding 4.7% and spotting 6.9% at 12 months, respectively), with no participants reporting vaginal bleeding or spotting after 18 months of testosterone. Factors associated with vaginal bleeding or spotting included lower serum testosterone levels and being on testosterone gel as compared to injections (e.g., esters or undecanoate preparations). If vaginal bleeding persisted, starting progestogens at three months resulted in a decrease in the intensity of vaginal bleeding and spotting. Discussion: Transgender men and hormone-prescribing providers can be reassured that vaginal bleeding and spotting usually stop within three months after testosterone initiation. If not, serum testosterone levels should be measured and testosterone dose adjusted to achieve serum testosterone levels in the physiologic male range. Adding a progestin can be considered after three to six months if bleeding persists. Providers should be aware that cessation of bleeding can be more difficult to achieve in transgender men with lower serum testosterone levels or those on testosterone gel.
Literature on the efficacy and safety of gender-affirming hormonal treatment (GAHT) in transgender people is limited. For this reason, in 2010 the European Network for the Investigation of Gender Incongruence (ENIGI) study was born. The aim of this review is to summarize evidence emerging from this prospective multicentric study and to identify future perspectives. GAHT was effective in inducing desired body changes in both trans AMAB and AFAB people (assigned male and female at birth, respectively). Evidence from the ENIGI study confirmed the overall safety of GAHT in the short/mid-term. In trans AMAB people, an increase in prolactin levels was demonstrated, whereas the most common side effects in trans AFAB people were acne development, erythrocytosis, and unfavorable changes in lipid profile. The main future perspectives should include the evaluation of the efficacy and safety of non-standardized hormonal treatment in non-binary trans people. Furthermore, long-term safety data on mortality rates, oncological risk, and cardiovascular, cerebrovascular and thromboembolic events are lacking. With this aim, we decided to extend the observation of the ENIGI study to 10 years in order to study all these aspects in depth and to answer these questions.
This review discusses the changes in bone mass, structure, and metabolism that occur upon gender-affirming hormonal treatment (GAHT) in transgender adults and adolescents, as well as their clinical relevance. In general, available evidence shows that GAHT in transgender adults is not associated with major bone loss. In transgender adolescents, pubertal suppression with gonadotropin-releasing hormone agonist monotherapy impairs bone development, but at least partial recovery is observed after GAHT initiation. Nevertheless, a research gap remains concerning fracture risk and determinants of bone strength other than bone mineral density. Attention for bone health is warranted especially in adult as well as adolescent trans women, given the relatively high prevalence of low bone mass both before the start of treatment and after long-term GAHT in this population. Strategies to optimize bone health include monitoring of treatment compliance and ensuring adequate exposure to administered sex steroids, in addition to general bone health measures such as adequate physical activity, adequate vitamin D and calcium intake, and a healthy lifestyle. When risk factors for osteoporosis exist the threshold to perform DXA should be low, and treatment decisions should be based on the same guidelines as the general population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.