Plants leaves develop proximodistal, dorsoventral (adaxial-abaxial), and mediolateral patterns following initiation. The Myb domain gene PHANTASTICA (PHAN) is required for adaxial fate in many plants , but the Arabidopsis ortholog ASYMMETRIC LEAVES1 (AS1) has milder effects, suggesting that alternate or redundant pathways exist . We describe enhancers of as1 with more elongate and dissected leaves. As well as RDR6, an RNA-dependent RNA polymerase previously proposed to influence as1 through microRNA , these enhancers disrupt ARGONAUTE7 (AGO7)/ZIPPY, SUPPRESSOR OF GENE SILENCING3 (SGS3), and DICER-LIKE4 (DCL4), which instead regulate trans-acting small interfering RNA (ta-siRNA) . Microarray analysis revealed that the AUXIN RESPONSE FACTOR genes ETTIN (ETT)/ARF3 and ARF4 were upregulated in ago7, whereas FILAMENTOUS FLOWER (FIL) was upregulated only in as1 ago7 double mutants. RDR6 and SGS3 likewise repress these genes, which specify abaxial fate . We show that the trans-acting siRNA gene TAS3, which targets ETT and ARF4, is expressed in the adaxial domain, and ett as1 ago7 triple mutants resemble as1. Thus FIL is downregulated redundantly by AS1 and by TAS3, acting through ETT, revealing a role for ta-siRNA in leaf polarity. RDR6 and DCL4 are required for systemic silencing, perhaps implicating ta-siRNA as a mobile signal.
Leaves are determinate organs that arise from the flanks of the shoot apical meristem as polar structures with distinct adaxial (dorsal) and abaxial (ventral) sides. Opposing regulatory interactions between genes specifying adaxial or abaxial fates function to maintain dorsoventral polarity. One component of this regulatory network is the Myb-domain transcription factor gene ASYMMETRIC LEAVES1 (AS1). The contribution of AS1 to leaf polarity varies across different plant species; however, in Arabidopsis, as1 mutants have only mild defects in leaf polarity, suggesting that alternate pathways exist for leaf patterning. Here, we describe three genes, PIGGYBACK1 (PGY1), PGY2 and PGY3, which alter leaf patterning in the absence of AS1. All three pgy mutants develop dramatic ectopic lamina outgrowths on the adaxial side of the leaf in an as1 mutant background. This leaf-patterning defect is enhanced by mutations in the adaxial HD-ZIPIII gene REVOLUTA (REV), and is suppressed by mutations in abaxial KANADI genes. Thus, PGY genes influence leaf development via genetic interactions with the HD-ZIPIII-KANADI pathway. PGY1, PGY2 and PGY3 encode cytoplasmic large subunit ribosomal proteins, L10a, L9 and L5, respectively. Our results suggest a role for translation in leaf dorsoventral patterning and indicate that ribosomes are regulators of key patterning events in plant development. Development 135, 1315Development 135, -1324Development 135, (2008 DEVELOPMENT 1316 from the Arabidopsis Biological Resource Centre (ABRC). kan1-2 and kan2-1 were obtained from John Bowman. All genetic interactions were in a Ler background. Plants were grown either in soil or on Murashige and Skoog media at 22°C with a day length of 16 hours. KEY WORDS: Ribosomal protein, Leaf polarity, ASYMMETRIC LEAVES1, PIGGYBACK, Arabidopsis Geneticspgy genes were cloned using Ler ϫ Columbia F2 mapping populations. For complementation a 2.1 kb genomic fragment encompassing At2g27530, a 5 kb genomic fragment encompassing At1g33140 and a 3.5 kb genomic fragment encompassing At3g25520 were cloned into the binary vector pMDC123 (Curtis and Grossniklaus, 2003) and transformed into pgy1-1/pgy1-1 as1/+, pgy2-1/pgy2-1 as1/+ and pgy3-1/pgy3-1 as1/+ plants, respectively, using standard agrobacterium-mediated transformation (Clough and Bent, 1998). For each complementation construct, basta resistant plants with an as1 phenotype were confirmed as as1 pgy homozygotes.as1-1 rev-6 was analysed in the F3 generation of the cross as1-1 ϫ rev-6. In the F2 generation of this cross as1-1 rev-6 segregated at 1:15. pgy1-1 rev-6 were obtained from the F3 generation of the cross pgy1-1 ϫ rev-6. Progeny from pgy1-1 rev-6/+ individuals segregated 1:3 pgy1-1 rev-6 mutants. as1-1 pgy1-1 rev-6 triple mutants were analysed in the F4 generation of the cross as1-1 pgy1-1 ϫ as1-1 rev-6, after selfing as1-1 pgy1-1 rev-6/+ F3 plants. Segregation of as1-1 pgy1-1 rev-6 in this F4 generation was 1:3. as1-1 kan1-2 and pgy1-1 kan1-2 were obtained from the F3 generation of the respective crosses...
Balamuthia disease in the United States is characterized by a highly fatal encephalitis that affects patients of all ages. Hispanics were disproportionately affected. The southwest region of the U.S. reported the most cases. Clinician awareness of Balamuthia as a cause of encephalitis might lead to earlier diagnosis and initiation of treatment, resulting in better outcomes.
SUMMARYDespite US sanitation advancements, millions of waterborne disease cases occur annually, although the precise burden of disease is not well quantified. Estimating the direct healthcare cost of specific infections would be useful in prioritizing waterborne disease prevention activities. Hospitalization and outpatient visit costs per case and total US hospitalization costs for ten waterborne diseases were calculated using large healthcare claims and hospital discharge databases. The five primarily waterborne diseases in this analysis (giardiasis, cryptosporidiosis, Legionnaires' disease, otitis externa, and non-tuberculous mycobacterial infection) were responsible for over 40 000 hospitalizations at a cost of $970 million per year, including at least $430 million in hospitalization costs for Medicaid and Medicare patients. An additional 50 000 hospitalizations for campylobacteriosis, salmonellosis, shigellosis, haemolytic uraemic syndrome, and toxoplasmosis cost $860 million annually ($390 million in payments for Medicaid and Medicare patients), a portion of which can be assumed to be due to waterborne transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.