BackgroundIntegrating QTL results from independent experiments performed on related species helps to survey the genetic diversity of loci/alleles underlying complex traits, and to highlight potential targets for breeding or QTL cloning. Potato (Solanum tuberosum L.) late blight resistance has been thoroughly studied, generating mapping data for many Rpi-genes (R-genes to Phytophthora infestans) and QTLs (quantitative trait loci). Moreover, late blight resistance was often associated with plant maturity. To get insight into the genomic organization of late blight resistance loci as compared to maturity QTLs, a QTL meta-analysis was performed for both traits.ResultsNineteen QTL publications for late blight resistance were considered, seven of them reported maturity QTLs. Twenty-one QTL maps and eight reference maps were compiled to construct a 2,141-marker consensus map on which QTLs were projected and clustered into meta-QTLs. The whole-genome QTL meta-analysis reduced by six-fold late blight resistance QTLs (by clustering 144 QTLs into 24 meta-QTLs), by ca. five-fold maturity QTLs (by clustering 42 QTLs into eight meta-QTLs), and by ca. two-fold QTL confidence interval mean. Late blight resistance meta-QTLs were observed on every chromosome and maturity meta-QTLs on only six chromosomes.ConclusionsMeta-analysis helped to refine the genomic regions of interest frequently described, and provided the closest flanking markers. Meta-QTLs of late blight resistance and maturity juxtaposed along chromosomes IV, V and VIII, and overlapped on chromosomes VI and XI. The distribution of late blight resistance meta-QTLs is significantly independent from those of Rpi-genes, resistance gene analogs and defence-related loci. The anchorage of meta-QTLs to the potato genome sequence, recently publicly released, will especially improve the candidate gene selection to determine the genes underlying meta-QTLs. All mapping data are available from the Sol Genomics Network (SGN) database.
Cultivated potato is susceptible to many pests and pathogens, none of which is more of a threat to potato agriculture than the late blight disease, caused by the oomycete Phytophthora infestans (Mont.) de Bary. To date all efforts to thwart this most adaptive of pathogens have failed, and early attempts to deploy 'R genes' introgressed from the wild Mexican hexaploid Solanum demissum ended in abject failure. With the advent of facile gene mapping and cloning, allied to knowledge of plant resistance gene structure, renewed efforts are leading to mapping and isolation of new sources of late blight resistance in potato wild species, many of which are being performed under the auspices of the BIOEXPLOIT project (Sub-project 2). We document recent advances in late blight resistance gene mapping and isolation, and postulate how these genes, allied to knowledge of pathogen effectors and their recognition specificity, may greatly enhance our chances of halting the progress of late blight disease in potato crops worldwide.
The pepper accession Criollo de Morelos 334 is the most efficient source of resistance currently known to Phytophthora capsici and P. parasitica. To investigate whether genetic controls of resistance to two Phytophthora species are independent, we compared the genetic architecture of resistance of CM334 to both Phytophthora species. The RIL population F5YC used to construct the high-resolution genetic linkage map of pepper was assessed for resistance to one isolate of each Phytophthora species. Inheritance of the P. capsici and P. parasitica resistance was polygenic. Twelve additive QTLs involved in the P. capsici resistance and 14 additive QTLs involved in the P. parasitica resistance were detected. The QTLs identified in this progeny were specific to these Phytophthora species. Comparative mapping analysis with literature data identified three colocations between resistance QTLs to P. parasitica and P. capsici in pepper. Whereas this result suggests presence of common resistance factors to the two Phytophthora species in pepper, which possibly derive from common ancestral genes, calculation of the colocation probability indicates that these colocations could occur by chance.
To find out new resistance sources to late blight in the wild germplasm for potato breeding, we examined the polygenic resistance of Solanum sparsipilum and S. spegazzinii by a quantitative trait locus (QTL) analysis. We performed stem and foliage tests under controlled conditions in two diploid mapping progenies. Four traits were selected for QTL detection. A total of 30 QTLs were mapped, with a large-effect QTL region on chromosome X detected in both potato relatives. The mapping of literature-derived markers highlighted colinearities with published late blight QTLs or R-genes. Results showed (a) the resistance potential of S. sparsipilum and S. spegazzinii for late blight control, and (b) the efficacy of the stem test as a complement to the foliage test to break down the complex late blight resistance into elementary components. The relationships of late blight resistance QTLs with R-genes and maturity QTLs are discussed.
The Grp1 locus confers broad-spectrum resistance to the potato cyst nematode species Globodera pallida and Globodera rostochiensis and is located in the GP21-GP179 interval on the short arm of chromosome V of potato. A high-resolution map has been developed using the diploid mapping population RHAM026, comprising 1,536 genotypes. The flanking markers GP21 and GP179 have been used to screen the 1,536 genotypes for recombination events. Interval mapping of the resistances to G. pallida Pa2 and G. rostochiensis Ro5 resulted in two nearly identical LOD graphs with the highest LOD score just north of marker TG432. Detailed analysis of the 44 recombinant genotypes showed that G. pallida and G. rostochiensis resistance could not be separated and map to the same location between marker SPUD838 and TG432. It is suggested that the quantitative resistance to both nematode species at the Grp1 locus is mediated by one or more tightly linked R genes that might belong to the NBS-LRR class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.