International audienceIsotopic compositions in the Monts d’Ambazac Pegmatite Field (French Massif Central) exhibit a narrow range of mica δ7Li values, ranging from -3.6 to + 3.4‰. The value obtained in biotite from the host Saint Sylvestre granite falls within this range (δ7Li = -1.5‰). Lithium concentrations are consistent with the degree of magmatic evolution of each pegmatite type: from 630 ppm in Type II up to 13,500 ppm in the more evolved Type VI pegmatite. Although the rare-element contents e.g., Li, Cs, Ta of the micas are consistent with pegmatite differentiation, δ7Li (‰) are firstly, independent of the degree of magmatic differentiation (independent of pegmatite type) and secondly, independent of the content of Li and other flux-elements such as Be and Cs. Muscovite sampled in pegmatite V from the Chabannes locality is the only pegmatite to exhibit a δ7Li variation from intermediate unit (-1.7‰) to internal pegmatitic unit (+ 3.4‰). The nature of this δ7Li variation suggests that there was extensive fractional crystallisation during the pegmatite’s consolidation. The independence of δ7Li (‰) evolution from the degree of magmatic evolution and the presence of distinct major rare-element bearing phases throughout the pegmatite field tend to confirm that the δ7Li (‰) values recorded in mica are inherited from crustal source rocks common to the granite and pegmatite-forming melts. We propose that the distinct pegmatite subtypes (beryl columbite vs lepidolite-petalite subtypes) observed throughout the Monts d’Ambazac Pegmatite Field reflect the diverse contributions of crustal protoliths. The lack of evidence of surrounding alteration combined with the absence of increasing Li-content within the host granite tend to confirm that the δ7Li values obtained within this pegmatite field are primary, and that no Li-diffusional process and/or mixing-driven Li-isotope fractionation has overprinted these isotopic compositions. In light of these results, the process of partial melting of protoliths enriched in rare-element bearing phases, e.g., mica, garnet, seems to be more responsible for Li-isotope fractionation than Li-diffusion or fractional crystallisation at the temperature of pegmatite consolidation. Finally, we discuss the use of Li isotopic compositions to identify the most highly evolved pegmatitic systems
The emplacement of LCT-type (Lithium-Cesium-Tantalum) pegmatite fields and their relationships with host rocks are commonly studied with petrographic, geochemical and isotopic analyses. Although these methods are efficient to understand the process of differentiation and/or enrichment in rare-elements during the crystallization of pegmatites, they are not appropriate to decipher, on field scale, the LCT pegmatites' emplacement. Here we apply a spatial statistical analysis to the LCT-pegmatites field of Monts d'Ambazac in the Saint Sylvestre Granitic Complex (Massif Central, France), in order to constrain and discuss spatial relationships between pegmatites, granites and faults. Various numeric variables (distance to the nearest neighbor, Ripley's L'-function, Euclidean distance, spatial density distribution, cluster analysis) have been computed to quantify both i) the spatial distribution of the pegmatite occurrences, including their grouping/ scattering and aligning features, and ii) the association of the pegmatites with individual rock types or structures. We show that a spatial relationship can be quantified between LCT-type pegmatites and ~N to NNE trending faults family; with 50 % of the pegmatite occurrences located less than 500 m away from one of these faults. This result is confirmed by the spatial relationships between the pegmatites distribution and the highest spatial density of this trend fault class. Moreover we demonstrate the high clustering rate of the pegmatites set. These clusters are preferentially oriented in the same N015° direction as the trend of the A class-faults, which is parallel to a large sheared corridor described in the central part of the study area. In contrast to analyses on relationships between faults and pegmatites, our results point out a lack of spatial link between each of the pegmatite subtypes and several potential granitic sources. We thus suggest that pegmatites were emplaced along A-faults trend. The development of these faults could have been favored by, and focused in, the central part of the granitic complex beforehand affected by a large shear-zone. These results reveal the efficiency and the utility of such a statistical approach to better constrain the LCT type pegmatites-faults-granites model. We think that such a methodology should be more systematically applied to the exploration of LCT pegmatite fields, particularly in poorly exposed domains.
International audienceExperiments have been performed both on a peraluminous leucogranitic (DK89) and a F-, Li-, P-rich pegmatitic (B2) melt to constrain the stability of micas in evolved crustal silicic magmas and refine mica-melt partition coefficients for F, Li, and Be. The experiments were conducted in parallel in two fO2 ranges, “oxidizing” (NNO +1 to +3) and “reducing” (NNO –1.6 to –1.4). One two-stage reducing-oxidizing experiment was conducted in a vessel fitted with a H2-permeable Shaw-type membrane. The approach toward equilibrium was tested by imposing long experimental durations and combining mica crystallization experiments with mica dissolution experiments using mica seeds. Experimental micas and melts were analyzed for major elements by electron microprobe and for light elements by nuclear microprobe. At 3 kbar, 620 °C, and under oxidizing conditions, B2 crystallized only muscovite, the biotite seeds reacting to form a new mica intermediate between phengite and Li-rich phengite. Under reducing conditions, biotite (siderophyllite composition) appeared as the stable mica. The two-stage experiment yielded a composite mica assemblage with siderophyllite cores mantled by muscovite rims. At 3.5–3.8 kbar, 720 °C, and under oxidizing conditions, DK89 crystallized only aluminous biotite and muscovite seeds reacted to form biotite-bearing assemblages; muscovite appeared together with biotite at 700 °C. Under reducing conditions, Al-rich biotite is also the stable mica at 720 °C. Partition coefficients show that F and Li are preferentially incorporated in biotite rather than in muscovite, the opposite as for Be. Biotite fractionation buffers the F and increases the Li and Be contents of the residual melt. Muscovite increases the Li content of the melt and has little influence on F and Be concentrations. Our experiments reproduce mica assemblages and compositions typical of Variscan pegmatites and leucogranites, yet very Li-rich micas (e.g., lepidolites) were not obtained. The results stress the differential influence of fO2 on mica stability in moderately and highly fractionated crustal melts. Mica crystallization in leucogranites does not appear to be strongly dependent on fO2. In contrast, a very strong influence of fO2 on stable mica assemblages is demonstrated for the pegmatitic melt. The reducing experiments emphasize the existence of a stability field for biotite in melts poor in Fe, Mg, and Ti. If fO2 is reducing, biotite must crystallize in moderately to highly evolved peraluminous crustal melts. In contrast, the crystallization of muscovite as the sole mica in evolved crustal melts constitutes an indicator of oxidizing fO2. Such an oxidizing evolution that deviates from classical buffered T-logfO2 trajectories is the consequence of a mechanism of magma “self-oxidation” that is proposed to result from dissociation of H2O in the melt
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.