Rapidly growing interest in using nanoparticles (NPs) for biomedical applications has increased concerns about their safety and toxicity. In comparison with bulk materials, NPs are more chemically active and toxic due to the greater surface area and small size. Understanding the NPs’ mechanism of toxicity, together with the factors influencing their behavior in biological environments, can help researchers to design NPs with reduced side effects and improved performance. After overviewing the classification and properties of NPs, this review article discusses their biomedical applications in molecular imaging and cell therapy, gene transfer, tissue engineering, targeted drug delivery, Anti-SARS-CoV-2 vaccines, cancer treatment, wound healing, and anti-bacterial applications. There are different mechanisms of toxicity of NPs, and their toxicity and behaviors depend on various factors, which are elaborated on in this article. More specifically, the mechanism of toxicity and their interactions with living components are discussed by considering the impact of different physiochemical parameters such as size, shape, structure, agglomeration state, surface charge, wettability, dose, and substance type. The toxicity of polymeric, silica-based, carbon-based, and metallic-based NPs (including plasmonic alloy NPs) have been considered separately.
The distribution of viral ribonucleic acid (RNA) on various cell membrane fractions derived from a porcine kidney cell line infected with Japanese encephalitis virus was investigated. At 40 h postinfection, after virus growth had reached its peak, three viral RNAs, 45S, 27S, and 20S, were associated with the cytoplasmic membranes and intact nuclei. The amount of each RNA associated with the nucleus was two-to fivefold greater than that present with the cytoplasmic membranes. Treatment of washed infected nuclei with 1.0% Triton X-100, which removed the outer nuclear envelope membrane, also removed the viral RNA. When the nucleus was fractionated into nuclear envelope membranes and a large particle fraction which sedimented at 600 x g, nearly all of the viral RNA remained associated with the envelope membranes. The nuclear envelope membranes contained higher viral RNA polymerase activity than the cytoplasmic membranes derived from the same cells. These data suggest that major sites for Japanese encephalitis virus RNA synthesis may be localized on or in very close association with the nuclear envelope membranes.
BackgroundScreening substantially reduces cervical cancer incidence and mortality. More than half of invasive cervical cancers are attributable to infrequent screening or not screening at all. The current study, My Body My Test (MBMT), evaluates the impact of mailed kits for self-collection of samples for human papillomavirus (HPV) testing on completion of cervical cancer screening in low-income, North Carolina women overdue for cervical cancer screening.Methods/designThe study will enroll at least 510 US women aged 25–64 years who report no Pap test in the last 4 years and no HPV test in the last 6 years. We will randomize participants to an intervention or control arm. The intervention arm will receive kits to self-collect a sample at home and mail it for HPV testing. In both the intervention and control arms, participants will receive assistance in scheduling an appointment for screening in clinic. Study staff will deliver HPV self-collection results by phone and assist in scheduling participants for screening in clinic. The primary outcome is completion of cervical cancer screening. Specifically, completion of screening will be defined as screening in clinic or receipt of negative HPV self-collection results. Women with HPV-negative self-collection results will be considered screening-complete. All other participants will be considered screening-complete if they obtain co-testing or Pap test screening at a study-affiliated institution or other clinic. We will assess whether the self-collection intervention influences participants’ perceived risk of cervical cancer and whether perceived risk mediates the relationship between HPV self-collection results and subsequent screening in clinic. We also will estimate the incremental cost per woman screened of offering at-home HPV self-collection kits with scheduling assistance as compared to offering scheduling assistance alone.DiscussionIf mailed self-collection of samples for HPV testing is an effective strategy for increasing cervical cancer screening among women overdue for screening, this method has the potential to reduce cervical cancer incidence and mortality in medically underserved women at higher risk of developing cervical cancer.Trial registrationClinicalTrials.gov NCT02651883, Registered on 11 January 2016.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.