Core Ideas Dissolved P increased with increasing co‐additions of AVAIL and P to metal oxides. AVAIL dissolved greater P with Al‐hydroxide than with ferrihydrite. AVAIL had no effect on P bonding distribution between Al(III) and Fe(III) in mixed sorbents. Less than 40% of fertilizer phosphate applied to soils is generally taken up by crops because of strong retention of P by soil solids. Our objective was to determine mechanisms by which AVAIL, a maleic‐itaconic copolymer used as a fertilizer additive, potentially affects retention of applied phosphate, and consequently plant availability. We measured competitive sorption of AVAIL and orthophosphate in aqueous suspensions of ferrihydrite and poorly crystalline Al hydroxide [pxl‐Al(OH)3] at pH 6.2, and characterized phosphate bonding distribution between Fe(III) and Al(III) in 1:1 (w/w) mixtures of these solids using P K‐edge X‐ray absorption near edge structure (XANES) spectroscopy. With increasing co‐additions of AVAIL and P at the levels evaluated, sorption results showed dissolved P increasing up to 0.45 and 1.25 mM for ferrihydrite and pxl‐Al(OH)3, respectively, which represented 18 and 34% of added P. Negative relationships between sorbed P and sorbed AVAIL implied a competitive adsorption mechanism between these two ligands, and solubilization of Fe by AVAIL indicated complexometric dissolution of ferrihydrite. The XANES results showed that 72 to 86% of sorbed P was bonded with Al(III) in the ferrihydrite/pxl‐Al(OH)3 mixtures, with only a minor (<15%) effect of AVAIL apparent when P was applied at the two levels tested in this study. Our results suggest that optimized AVAIL application rates for enhancing crop availability of P would depend on soil sorption characteristics and the soil content of residual P relative to its soil sorption capacity.
Application of poultry litter (PL) to soil may lead to nitrogen (N) losses through ammonia (NH3) volatilization and to potential contamination of surface runoff with PL-derived phosphorus (P). Amending litter with acidified biochar may minimize these problems by decreasing litter pH and by retaining litter-derived P, respectively. This study evaluated the effect of acidified biochars from pine chips (PC) and peanut hulls (PH) on NH3 losses and inorganic N and P released from surface-applied or incorporated PL. Poultry litter with or without acidified biochars was surface-applied or incorporated into the soil and incubated for 21 d. Volatilized NH3 was determined by trapping it in acid. Inorganic N and P were determined by leaching the soil with 0.01 M of CaCl2 during the study and by extracting it with 1 M KCl after incubation. Acidified biochars reduced NH3 losses by 58 to 63% with surface-applied PL, and by 56 to 60% with incorporated PL. Except for PH biochar, which caused a small increase in leached NH4 +-N with incorporated PL, acidified biochars had no effect on leached or KCl-extractable inorganic N and P from surface-applied or incorporated PL. These results suggest that acidified biochars may decrease NH3 losses from PL but may not reduce the potential for P loss in surface runoff from soils receiving PL.
Repeated applications of phosphorus (P) fertilizers result in the buildup of P in soil (commonly known as legacy P), a large fraction of which is not immediately available for plant use. Long-term applications and accumulations of soil P is an inefficient use of dwindling P supplies and can result in nutrient runoff, often leading to eutrophication of water bodies. Although soil legacy P is problematic in some regards, it conversely may serve as a source of P for crop use and could potentially decrease dependence on external P fertilizer inputs. This paper reviews the (1) current knowledge on the occurrence and bioaccessibility of different chemical forms of P in soil, (2) legacy P transformations with mineral and organic fertilizer applications in relation to their potential bioaccessibility, and (3) approaches and associated challenges for accessing native soil P that could be used to harness soil legacy P for crop production. We highlight how the occurrence and potential bioaccessibility of different forms of soil inorganic and organic P vary depending on soil properties, such as soil pH and organic matter content. We also found that accumulation of inorganic legacy P forms changes more than organic P species with fertilizer applications and cessations. We also discuss progress and challenges with current approaches for accessing native soil P that could be used for accessing legacy P, including natural and genetically modified plant-based strategies, the use of P-solubilizing microorganisms, and immobilized organic P-hydrolyzing enzymes. It is foreseeable that accessing legacy P will require multidisciplinary approaches to address these limitations.
Monensin is a common antiparasitic drug given to poultry that contaminates poultry manure and bedding material (broiler litter). As broiler litter is commonly applied to agricultural fields as fertilizer, monensin could be released beyond the farm if it is not retained or degraded in the soil. This study aimed to assess the impact of long-term surface application of broiler litter (i.e., 17 years) on the capacity of pasture soil to sorb monensin. The soils were exposed to a range of monensin concentrations (0.18 to 1.81 μmol L), solution pH (pH 4-9), and temperatures (15, 25, and 35 °C) and monensin was measured as loss from solution (i.e., sorption). Soils receiving long-term litter applications were hypothesized to retain more monensin than unamended soils because they have higher organic matter concentrations. However, soils from broiler litter-amended fields sorbed 46% less monensin than soils from unamended fields, likely because broiler litter also increased soil pH. The sorption of monensin to soil was strongly influenced by pH, with an order of magnitude greater sorption at pH 4 than at pH 9. Both soils had similar capacity to sorb monensin under similar solution pH, despite differences in organic carbon content (with the broiler litter-amended having 25% greater relative to the unamended soil). Temperature did not significantly impact monensin sorption for either soil. Our findings suggest increasing soil pH, for instance through liming, could enhance mobility of monensin.
The use of ionophores as antiparasitic drugs plays an important role in US poultry production, especially in the broiler () industry. However, administered ionophores can pass through the bird's digestive system and appear in broiler litter, which, when applied to agricultural fields, can present an environmental hazard. Stacking (storing or stockpiling) broiler litter for some time might decrease the litter ionophore concentrations before land application. Because ionophores undergo abiotic hydrolysis at low pH, decreasing litter pH with acidic aluminum sulfate (alum) might also decrease ionophore concentrations. We assessed the change in ionophore concentrations in broiler litter in response to the length of time broiler litter was stored (stacking time) and alum addition. We spiked broiler litter with monensin and salinomycin, placed alum-amended litter (∼pH 4-5) and unamended litter (∼pH 8-9) into 1.8-m bins, and repeatedly sampled each bin for 112 d. Our findings showed that stacking broiler litter alone did not have an impact on monensin concentration, but it did slowly reduce salinomycin concentration by 55%. Adding alum to broiler litter reduced monensin concentration by approximately 20% relative to unamended litter, but it did not change salinomycin concentration. These results call for continued search for alternative strategies that could potentially reduce the concentration of ionophores in broiler litter before their application to agricultural soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.