Instructive programs guiding cell fate decisions in the developing mouse embryo are controlled by a few so-termed master regulators. Genetic studies demonstrate that the T-box transcription factor Eomesodermin (Eomes) is essential for epithelial to mesenchymal transition (EMT), mesoderm migration and specification of definitive endoderm (DE) during gastrulation1. Here we report that Eomes expression within the primitive streak marks the earliest cardiac mesoderm and promotes formation of cardiovascular progenitors by directly activating the bHLH transcription factor Mesp1 upstream of the core cardiac transcriptional machinery2-4. In marked contrast to Eomes/Nodal signalling interactions that cooperatively regulate anterior-posterior (A-P) axis patterning and allocation of the DE cell lineage1, 5-8, formation of cardiac progenitors requires only low levels of Nodal activity accomplished via a Foxh1/Smad4 independent mechanism. Collectively our experiments demonstrate that Eomes governs discrete context dependent transcriptional programmes that sequentially specify cardiac and DE progenitors during gastrulation.
Introduction: Recent reports suggest that sudden smell loss might be a symptom of SARS-CoV-2 infection. The aim of this study was to investigate the frequency of olfactory loss in an outpatient population who presented to a coronavirus testing center during a 2-week period and to evaluate the diagnostic value of the symptom "sudden smell loss" for screening procedures. Methods: In this cross-sectional controlled cohort study, 500 patients who presented with symptoms of a common cold to a corona testing center and fulfilled corona testing criteria completed a standardized diagnostic questionnaire which included the patients' main symptoms, time course, and an additional self-assessment of the patients' current smell, taste function, and nasal breathing compared to the level before the onset of symptoms. Results: Out of the 500 patients, 69 presented with olfactory loss. Twenty-two of them subsequently tested positive for SARS-CoV-2. Only 12 out of the patients without olfactory loss tested positive, resulting in a frequency of 64.7% for the symptom "sudden smell loss" in COVID-19 patients. Compared to COVID-19 patients without smell loss, they were significantly younger and less severely affected. Changes in nasal airflow were significantly more pronounced in SARS-CoV-2 negative patients with olfactory complaints compared to the patients with smell loss who tested positive for SARS-CoV-2. By excluding patients with a blocked nose, the symptom "sudden smell loss" can be attested a high specificity (97%) and a sensitivity of 65% with a positive predictive value of 63% and negative predictive value of 97% for COVID-19. Conclusion: Considering the high frequency of smell loss in non-hospitalized COVID-19 patients, acute olfactory impairment should be recognized as an early symptom of the disease and should be tested for on a regular basis. In contrast to other acute viral smell impairment, CO-VID-19-associated smell loss seems to be only rarely accompanied by a severely blocked nose.
Introduction: Recent reports suggest that sudden smell loss might be a symptom of SARS-CoV-2 infection. The aim of this study was to investigate the frequency of olfactory loss in an out-patient population who presented to a coronavirus testing center during a 2-week period and to evaluate the diagnostic value of the symptom sudden smell loss for screening procedures. Methods: In this cross-sectional controlled cohort study, 500 patients who presented with symptoms of a common cold to a corona testing center and fulfilled corona testing criteria, completed a standardized diagnostic questionnaire which included the patients main symptoms, time course and an additional self-assessment of the patients current smell, taste function and nasal breathing compared to the level before onset of symptoms. Results: Out of the 500 patients, 69 presented with olfactory loss. Twenty-two of them subsequently tested positive for SARS-CoV-2. Only twelve out of the patients without olfactory loss tested positive, resulting in a frequency of 64.7% for the symptom sudden smell loss in COVID-19 patients. Compared to COVID-19 patients without smell loss, they were significantly younger and less severely affected. Changes in nasal airflow were significantly more pronounced in SARS-CoV-2 negative patients with olfactory complaints compared to the patients with smell loss who were tested positive for SARS-CoV-2. By excluding patients with a blocked nose, the symptom sudden smell loss can be attested a high specificity (97%) and a sensitivity of 65% with a PPV of 63% and NPV of 97% for COVID-19. Conclusion: Considering the high frequency of smell loss in non-hospitalized COVID-19 patients, acute olfactory impairment should be included in the WHO symptoms list and should be recognized as an early symptom of the disease. In contrast to other acute viral smell impairment, COVID-19 associated smell loss seems to be only rarely accompanied by a severely blocked nose.
Background. Commercially available SARS-CoV-2-directed antibody assays may assist in diagnosing past exposure to SARS-CoV-2 antigens. Methods. We cross-compared eight immunoassays detecting antibodies against SARS-CoV-2 nucleocapsid(N)- or spike(S)-antigens in three cohorts consisting of 859 samples from 622 patients: (#1)EDI™-Novel-Coronavirus-COVID19, Epitope; (#2)RecomWell-SARS-CoV-2, Mikrogen; (#3)COVID19-ELISA, VirCell; (#4)Elecsys-Anti-SARS-CoV-2-N, Roche; (#5)LIAISON®-SARS-CoV-2-S1/S2, Diasorin; (#6)Anti-SARS-CoV-2-ELISA, EuroImmun; (#7)Elecsys-Anti-SARS-CoV-2-S, Roche; and (#8)LIAISON®-SARS-CoV-2-TrimericS, Diasorin. Results. In cross-sectional Cohort-1 (68 sera from 38 patients with documented SARS-CoV-2 infection), agreement between assays #1 to #6 ranged from 75% to 93%, whereby discordance mostly resulted from N-based assays #1 to #4. In cross-sectional Cohort-2 (510 sera from 510 patients; 56 documented, 454 unknown SARS-CoV-2 infection), assays #4 to #6 were analyzed further together with #7 and #8 revealing 94% concordance (44 [9%] positives and 485 [85%] negatives). Discordance was highest within 2 weeks after SARS-CoV-2/CoVID19 diagnosis and confirmed in the longitudinal Cohort-3 (281 sera from 74 CoVID19 patients), using assays #4, #6, #7 and #8. Sub-analysis of 20 (27%) initially seronegative Cohort-3 patients revealed assay-dependent 50% and 90% seroconversion rates after 8-11 days and 14-18 days, respectively. Increasing SARS-CoV-2 antibodies were significantly associated with declining levels of viral loads, lactate dehydrogenase, interleukin-6 and C-reactive protein and preceded clearance of SARS-CoV-2 detection in the upper respiratory tract by approximately 1 week. Conclusion. SARS-CoV-2 specific antibody assays show substantial agreement, but interpretation of qualitative and semi-quantitative results depends on the time elapsed post-diagnosis and the choice of viral antigen. Mounting of systemic SARS-CoV-2-specific antibodies may predict recovery from viral injury and clearance of mucosal replication.
Objectives MSSA bloodstream infections (BSIs) are associated with considerable mortality. Data regarding therapeutic drug monitoring (TDM) and pharmacological target attainment of the β-lactam flucloxacillin are scarce. Patients and methods We determined the achievement of pharmacokinetic/pharmacodynamic targets and its association with clinical outcome and potential toxicity in a prospective cohort of 50 patients with MSSA-BSI. Strain-specific MICs and unbound plasma flucloxacillin concentrations (at five different timepoints) were determined by broth microdilution and HPLC–MS, respectively. Results In our study population, 48% were critically ill and the 30 day mortality rate was 16%. The median flucloxacillin MIC was 0.125 mg/L. The median unbound trough concentration was 1.7 (IQR 0.4–9.3), 1.9 (IQR 0.4–6.2) and 1.0 (IQR 0.6–3.4) mg/L on study day 1, 3 and 7, respectively. Optimal (100% fT>MIC) and maximum (100% fT>4×MIC) target attainment was achieved in 45 (90%) and 34 (68%) patients, respectively, throughout the study period. Conversely, when using the EUCAST epidemiological cut-off value instead of strain-specific MICs, target attainment was achieved in only 13 (26%) patients. The mean unbound flucloxacillin trough concentration per patient was associated with neurotoxicity (OR 1.12 per 1 mg/L increase, P = 0.02) and significantly higher in deceased patients (median 14.8 versus 1.7 mg/L, P = 0.01). Conclusions Flucloxacillin pharmacological target attainment in MSSA-BSI patients is frequently achieved when unbound flucloxacillin concentrations and strain-specific MICs are considered. However, currently recommended dosing regimens may expose patients to excessive flucloxacillin concentrations, potentially resulting in drug-related organ damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.