Microplastics are ubiquitous across ecosystems, yet the exposure risk to humans is unresolved. Focusing on the American diet, we evaluated the number of microplastic particles in commonly consumed foods in relation to their recommended daily intake. The potential for microplastic inhalation and how the source of drinking water may affect microplastic consumption were also explored. Our analysis used 402 data points from 26 studies, which represents over 3600 processed samples. Evaluating approximately 15% of Americans’ caloric intake, we estimate that annual microplastics consumption ranges from 39000 to 52000 particles depending on age and sex. These estimates increase to 74000 and 121000 when inhalation is considered. Additionally, individuals who meet their recommended water intake through only bottled sources may be ingesting an additional 90000 microplastics annually, compared to 4000 microplastics for those who consume only tap water. These estimates are subject to large amounts of variation; however, given methodological and data limitations, these values are likely underestimates.
Microplastics, plastic particles <5 mm, are an emerging concern in aquatic ecosystems. Because microplastics are small, they are available to many filter-feeding organisms, which can then be consumed by higher trophic level organisms, including humans. This study documents the quantity of microplastics present in wild and cultured Manila clams (Venerupis philippinarum). Three active shellfish farms and three reference beaches (i.e., non-shellfish farm sites) in Baynes Sound, British Columbia were chosen to examine the microplastic concentrations in wild and cultured Manila clams. Microplastics were isolated using a nitric acid digestion technique and enumerated from 54 clams (27 farmed and 27 non-farmed). Qualitative attributes, such as colour and microplastic type (fiber, fragment, or film) also were recorded. There was no significant difference (F = 1.29; df = 1,4; P = 0.289) between microplastic concentrations in cultured and wild clams. Microplastic concentrations ranged from 0.07 to 5.47 particles/g (from reference beach and shellfish farm clams, respectively). Fibers were the dominant microplastic (90 %); colourless and dark gray fibers were the most common colours observed (36 and 26 %, respectively). Although this indicates that microplastics are definitely present in seafood consumed by humans, shellfish aquaculture operations do not appear to be increasing microplastic concentrations in farmed clams in this region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.