The zebra finch is an important model organism in several fields1,2 with unique relevance to human neuroscience3,4. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken5—the only bird with a sequenced genome until now6. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes7. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.
High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are only available for a few non-microbial species 1-4 . To address this issue, the international Genome 10K (G10K) consortium 5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling the most accurate and complete reference genomes to date. Here we summarize these developments, introduce a set of quality standards, and present lessons learned from sequencing and assembling 16 species representing major vertebrate lineages (mammals, birds, reptiles, amphibians, teleost fishes and cartilaginous fishes). We confirm that long-read sequencing technologies are essential for maximizing genome quality and that unresolved complex repeats and haplotype heterozygosity are major sources of error in assemblies. Our new assemblies identify and correct substantial errors in some of the best historical reference genomes. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an effort to generate high-quality, complete reference genomes for all ~70,000 extant vertebrate species and help enable a new era of discovery across the life sciences.
In 1978, when the Task Panel report to the US President’s Commission on Mental Health emphasized the importance of improving health care and easing the pain of those suffering from emotional distress syndromes including loneliness, few anticipated that this issue would still need to be addressed 40 years later. A meta-analysis (Masi et al., 2011) on the efficacy of treatments to reduce loneliness identified a need for well-controlled randomized clinical trials focusing on the rehabilitation of maladaptive social cognition. We review assessments of loneliness and build on this meta-analysis to discuss the efficacy of various treatments for loneliness. With the advances made over the past 5 years in the identification of the psychobiological and pharmaceutical mechanisms associated with loneliness and maladaptive social cognition, there is increasing evidence for the potential efficacy of integrated interventions that combine (social) cognitive behavioral therapy with short-term adjunctive pharmacological treatments.
Humans and songbirds are two of the rare animal groups that modify their innate vocalizations. The identification of FOXP2 as the monogenetic locus of a human speech disorder exhibited by members of the family referred to as KE enables the first examination of whether molecular mechanisms for vocal learning are shared between humans and songbirds. Here, in situ hybridization analyses for FoxP1 and FoxP2 in a songbird reveal a corticostriatal expression pattern congruent with the abnormalities in brain structures of affected KE family members. The overlap in FoxP1 and FoxP2 expression observed in the songbird suggests that combinatorial regulation by these molecules during neural development and within vocal control structures may occur. In support of this idea, we find that FOXP1 and FOXP2 expression patterns in human fetal brain are strikingly similar to those in the songbird, including localization to subcortical structures that function in sensorimotor integration and the control of skilled, coordinated movement. The specific colocalization of FoxP1 and FoxP2 found in several structures in the bird and human brain predicts that mutations in FOXP1 could also be related to speech disorders.
A young male zebra finch (Taeniopygia guttata) learns to sing by copying the vocalizations of an older tutor in a process that parallels human speech acquisition. Brain pathways that control song production are well defined, but little is known about the sites and mechanisms of tutor song memorization. Here we test the hypothesis that molecular signaling in a sensory brain area outside of the song system is required for developmental song learning. Using controlled tutoring and a pharmacological inhibitor, we transiently suppressed the extracellular signal-regulated kinase signaling pathway in a portion of the auditory forebrain specifically during tutor song exposure. On maturation, treated birds produced poor copies of tutor song, whereas controls copied the tutor song effectively. Thus the foundation of normal song learning, the formation of a sensory memory of tutor song, requires a conserved molecular pathway in a brain area that is distinct from the circuit for song motor control.Young male zebra finches learn to sing from adult tutors during a critical period in juvenile life. Developmental song learning occurs in two phases 1 . First, the young bird creates an auditory memory, or 'template', of his tutor's song. Then the young bird begins to vocalize, and, through a process of sensorimotor error correction, modifies his own song to resemble the tutor template. As an adult, each male zebra finch sings a unique set of unchanging syllables (the bird's own song) that reflects his earlier song exposure.The neural circuitry that controls song production is relatively well understood 2-4 , but it has been much more difficult to find the neuroanatomical and molecular basis for the sensory component of song learning: tutor song memorization. Recent studies suggest that the forebrain auditory lobule 5 , the functional homolog of mammalian primary and secondary auditory cortices, may be important in forming learned song representations. In adult songbirds, immediate-early gene induction and distinct patterns of cellular activity occur in the auditory lobule during song recognition learning 6-9 . Similar measures can be correlated with the fraction of tutor song that is copied 10-13 , implying that a tutor song trace persists in the auditory lobule. The induction of one immediate-early gene, zenk (also known as Egr1, Zif268, , is regulated by the extracellular signal-regulated kinase (ERK) in NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript the zebra finch auditory lobule5 and in other models 14-16 . This connection to ERK, part of a molecular pathway that is integral to memory 14,17 , led us to hypothesize that the ERK cascade in the auditory lobule was necessary for tutor song memorization. We tested this hypothesis using controlled tutor experience and a specific inhibitor of ERK activation 16 , and found that molecular processing in the auditory lobule during tutor exposure is required for accurate tutor song copying. Results Controlled tutoringYoung male zebra finches were soci...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.