The selected examples of successful dosaging ranges are provided, while emphasizing the necessity of empirically determined dose-response relationships based on the precise parameters and conditions inherent to a specific hypothesis. This review provides a new, experimentally based compilation of species-specific dose selection for studies on the in vivo effects of nicotine.
These results suggest that while males and females may regulate their intake of nicotine similarly under limited access conditions, the motivation to obtain nicotine is higher in females.
SummaryThe intrinsic neural networks of the gastrointestinal tract are derived from dedicated neural crest progenitors that colonize the gut during embryogenesis and give rise to enteric neurons and glia. Here, we study how an essential subpopulation of enteric glial cells (EGCs) residing within the intestinal mucosa is integrated into the dynamic microenvironment of the alimentary tract. We find that under normal conditions colonization of the lamina propria by glial cells commences during early postnatal stages but reaches steady-state levels after weaning. By employing genetic lineage tracing, we provide evidence that in adult mice the network of mucosal EGCs is continuously renewed by incoming glial cells originating in the plexi of the gut wall. Finally, we demonstrate that both the initial colonization and homeostasis of glial cells in the intestinal mucosa are regulated by the indigenous gut microbiota.
Nicotine supports stable SA on a PR. Since PR and FR schedules may measure different aspects of nicotine reinforcement, PR schedules may be valuable in further characterizing group and individual differences in nicotine reinforcement.
Nigrostriatal damage leads to a reduction in striatal nicotinic acetylcholine receptors (nAChRs) in rodents, monkeys, and patients with Parkinson's disease. The present studies were undertaken to investigate whether these nAChR declines are associated with alterations in striatal nAChR function and, if so, to identify the receptor subtypes involved. To induce nigrostriatal damage, mice were injected with the selective dopaminergic toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.