A mild method for the regioselective C2-bromination of fused azine N-oxides is presented, employing tosic anhydride as the activator and tetra-n-butylammonium bromide as the nucleophilic bromide source. The C2-brominated compounds are produced in moderate to excellent yields and with excellent regioselectivity in most cases. The potential extension of this method to other halogens, effecting C2-chlorination with Ts(2)O/TBACl is also presented. Finally, this method could be incorporated into a viable one-pot oxidation/bromination process, using methyltrioxorhenium/urea hydropgen peroxide as the oxidant.
A facile method for the synthesis of challenging medium-sized cyclic ethers has been developed via a novel oxidative rearrangement of benzylic tertiary alcohols. The reaction provides access to cyclic acetals with diverse substitution at both C2 and the aromatic ring. The unique reactivity is enabled by poly(cationic) hypervalent iodine reagents and represents the first synthetic application of this underexplored class of compounds.
Over the last 20 years, high valent metal complexes have evolved from mere curiosities to being at the forefront of modern catalytic method development. This approach has enabled transformations complimentary to those possible via traditional manifolds, most prominently carbon-heteroatom bond formation. Key to the advancement of this chemistry has been the identification of oxidants that are capable of accessing these high oxidation state complexes. The oxidant has to be both powerful enough to achieve the desired oxidation as well as provide heteroatom ligands for transfer to the metal center; these heteroatoms are often subsequently transferred to the substrate via reductive elimination. Herein we will review the central role that hypervalent iodine reagents have played in this aspect, providing an ideal balance of versatile reactivity, heteroatom ligands, and mild reaction conditions. Furthermore, these reagents are environmentally benign, non-toxic, and relatively inexpensive compared to other inorganic oxidants. We will cover advancements in both catalysis and high valent complex isolation with a key focus on the subtle effects that oxidant choice can have on reaction outcome, as well as limitations of current reagents.
Herein, we report a simplified approach to the synthesis of medium-ring ethers through the electrophilic activation of secondary alcohols with (poly)cationic λ3-iodanes (N-HVI). Excellent levels of selectivity are achieved for C–O bond migration over established α-elimination pathways, enabled by the unique reactivity of a novel 2-OMe-pyridine-ligated N-HVI. The resulting HFIP-acetals are readily derivatized with a range of nucleophiles, providing a versatile functional handle for subsequent manipulations. The utility of this methodology for late-stage natural product derivatization was also demonstrated, providing a new tool for diversity-oriented synthesis and complexity-to-diversity (CTD) efforts. Preliminary mechanistic investigations reveal a strong effect of alcohol conformation on reactive pathway, thus providing a predictive power in the application of this approach to complex molecule synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.