Pulmonary fibrosis, in particular idiopathic pulmonary fibrosis (IPF), results from aberrant wound healing and scarification. One population of fibroblasts involved in the fibrotic process is thought to originate from lung epithelial cells via epithelial-mesenchymal transition (EMT). Indeed, alveolar epithelial cells (AECs) undergo EMT in vivo during experimental fibrosis and ex vivo in response to TGF-β1. As the ECM critically regulates AEC responses to TGF-β1, we explored the role of the prominent epithelial integrin α3β1 in experimental fibrosis by generating mice with lung epithelial cell-specific loss of α3 integrin expression. These mice had a normal acute response to bleomycin injury, but they exhibited markedly decreased accumulation of lung myofibroblasts and type I collagen and did not progress to fibrosis. Signaling through β-catenin has been implicated in EMT; we found that in primary AECs, α3 integrin was required for β-catenin phosphorylation at tyrosine residue 654 (Y654), formation of the pY654-β-catenin/pSmad2 complex, and initiation of EMT, both in vitro and in vivo during the fibrotic phase following bleomycin injury. Finally, analysis of lung tissue from IPF patients revealed the presence of pY654-β-catenin/pSmad2 complexes and showed accumulation of pY654-β-catenin in myofibroblasts. These findings demonstrate epithelial integrin-dependent profibrotic crosstalk between β-catenin and Smad signaling and support the hypothesis that EMT is an important contributor to pathologic fibrosis.
Fibrosis is characterized by accumulation of activated fibroblasts and pathological deposition of fibrillar collagens. Activated fibroblasts overexpress matrix proteins and release factors that promote further recruitment of activated fibroblasts, leading to progressive fibrosis. The contribution of epithelial cells to this process remains unknown. Epithelium-directed injury may lead to activation of epithelial cells with phenotypes and functions similar to activated fibroblasts. Prior reports that used a reporter gene fate-mapping strategy are limited in their ability to investigate the functional significance of epithelial cell-derived mesenchymal proteins during fibrogenesis. We found that lung epithelial cell-derived collagen I activates fibroblast collagen receptor discoidin domain receptor-2, contributes significantly to fibrogenesis, and promotes resolution of lung inflammation. Alveolar epithelial cells undergoing transforming growth factor-β-mediated mesenchymal transition express several other secreted profibrotic factors and are capable of activating lung fibroblasts. These studies provide direct evidence that activated epithelial cells produce mesenchymal proteins that initiate a cycle of fibrogenic effector cell activation, leading to progressive fibrosis. Therapy targeted at epithelial cell production of type I collagen offers a novel pathway for abrogating this progressive cycle and for limiting tissue fibrosis but may lead to sustained lung injury/inflammation.
Background: TGF1-induced pY654--catenin correlates with epithelial mesenchymal transition (EMT) and pulmonary fibrosis, but whether pY654--catenin is functionally important is unknown. Results: -Catenin point mutants reveal that pY654 is critical to EMT, and pY654--catenin accumulation is blocked by axin-dependent -catenin turnover. Conclusion: Raised axin levels in vivo attenuate EMT and fibrosis after bleomycin injury. Significance: Targeting axin levels could attenuate fibrosis without blocking TGF1 homeostatic functions.
The matrix metalloproteinase (MMP) system consists of a proteolytic component, the metalloproteinases, and an associated class of tissue inhibitors of metalloproteinases (TIMPs). We investigated the cellular localization of the TIMPs and the gelatinase family of MMPs throughout the latter stages of follicular growth and during the periovulatory period. Immature female rats were injected with eCG, and ovaries were collected at the time of eCG administration (0 h) and at 6, 12, 24, or 36 h after eCG injection (i.e., follicular development group). A second group of animals (periovulatory) was injected with eCG followed by hCG 48 h later, and ovaries were collected at 0, 12, and 24 h after hCG. Ovaries were processed for the cellular localization of gelatinase or TIMP mRNA or gelatinolytic activity. Gelatinase mRNA (MMP-2 and MMP-9) was localized to the theca of developing follicles and to the stroma. Following a hCG stimulus, MMP-2 mRNA increased as the granulosa cells of preovulatory follicles underwent luteinization during formation of the corpus luteum (CL). MMP-9 mRNA remained predominantly in the theca during this period. In situ zymography for gelatinolytic activity demonstrated a pattern of activity that corresponded with the localization of MMP-2 and MMP-9 mRNA around developing follicles. Gelatinolytic activity was observed at the apex of preovulatory follicles and throughout the forming CL. The mRNA for TIMP-1, -2, and -3 was localized to the stroma and theca of developing follicles. TIMP-3 mRNA was present in the granulosa cells of certain follicles but was absent in granulosa cells of adjacent follicles. At 12 h after hCG, luteinizing granulosa cells expressed TIMP-1 and TIMP-3 mRNA, but TIMP-2 mRNA was at levels equivalent to the background. In the newly forming CL at 24 h after hCG administration, the luteal cells expressed TIMP-1, -2, and -3 mRNA, although the pattern of cellular expression was unique for each of the TIMPs. These findings demonstrate that the MMPs and TIMPs are in the cellular compartments appropriate for impacting the remodeling of the extracellular matrix as the follicle grows, ovulates, and forms the CL.
Palmitate impairs L-cell clock function at the peak of Bmal1 gene expression, thereby impairing mitochondrial function and ultimately rhythmic glucagon-like peptide-1 secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.