In this manuscript, a scheme for neural-learning-enhanced Cartesian Admittance control is presented for a robotic manipulator to deal with dynamic environments with moving remote center of motion (RCM) constraints. Although some research has been implemented to address fixed constrained motion, the dynamic moving movement constraint is still challenging. Indeed, the moving active RCM constraints generate uncertain disturbance on the robot tool shaft with unknown dynamics. The neural-learning-enhanced decoupled controller with disturbance optimisation is employed and implemented to maintain the performance under the kinematic uncertain and dynamic uncertain generated. In addition, the admittance Cartesian control method is introduced to control the robot, providing compliant behaviour to an external force in its operational space. In this proposed framework, a neural-learning-enhanced disturbance observer is investigated to calculate the external factor operating on the end effector premised on generalised momentum in order to ensure accuracy. Finally, the experiments are implemented using a redundant robot to validate the efficacy of the suggested approach with moving RCM constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.