Reaction of 1-naphthylamine with ethyl benzoylacetate gives the corresponding benzoyl acetamide derivative 1, which undergoes cyclization to 4-phenylbenzo[h]quinolin-2(1H)-one (2) in the presence of H2SO4. Bromination with POBr3, followed by reaction with n-BuLi and DMF, gives 4-phenylbenzo[h]quinoline-2-carbaldehyde (4), which is converted to the corresponding oxime hydrochloride 5 with NH2OH·HCl. Hydrogenation of 5 catalyzed by 10% Pd/C (type 338) leads to 4-phenyl-2-aminomethylbenzo[h]quinoline hydrochloride (HCNNPh·HCl, 6) isolated in high yield. Similarly, the 4-methyl-2-aminomethylbenzo[h]quinoline derivative (HCNNMe·HCl, 12) is prepared starting from 1-naphthylamine and 2,2,6-trimethyl-4H-1,3-dioxin-4-one, following the route for 6. Reaction of RuCl2(PPh3)3 with a diphosphine (PP), the HCl salt 6, and NEt3 in 2-propanol leads to the pincer complexes RuCl(CNNPh)(PP) (PP = Ph2P(CH2)3PPh2, 13; Ph2P(CH2)4PPh2, 14; 1,1′-bis(diphenylphosphino)ferrocene, 15). The methyl derivatives RuCl(CNNMe)(PP) (PP = Ph2P(CH2)3PPh2, 16; Ph2P(CH2)4PPh2, 17; 1,1′-bis(diphenylphosphino)ferrocene, 18) are obtained in a similar way using 12 in place of 6. Treatment of [RuCl2(p-cymene)]2 with rac-BINAP, 6, and NEt3 affords RuCl(CNNPh)(BINAP) (19), isolated as a mixture of two diastereoisomers (3:4 molar ratio). The chiral RuCl(CNNPh)[(S,R)-JOSIPHOS] (20) is obtained as a single isomer from [RuCl2(p-cymene)]2, (S,R)-JOSIPHOS, and 6. Complexes 13-20 efficiently catalyze the transfer hydrogenation of acetophenone in 2-propanol at reflux in the presence of NaOiPr (2 mol%) with S/C = 5000-20-000 and at high rate (TOF up to 6.7 × 103 min-1). With complexes 13, 15, 17, and 18 several ketones of commercial-grade purity have been reduced to alcohols, including the bulky RCO(tBu) (R = Me, Ph) substrates. With 20 acetophenone is reduced to (S)-1-phenylethanol with 85% ee. The pincer complexes 13-15 and 18 are also found highly active in the hydrogenation of ketones at 40 °C with an S/C = 10-000, under 5 bar of dihydrogen in methanol and in the presence of 2 mol % of a base (NaOH, KOH, NaOMe)