Smartphones and wearable devices can be used to remotely monitor health behaviors, but little is known about how individual characteristics influence sustained use of these devices. Leveraging data on baseline activity levels and demographic, behavioral, and psychosocial traits, we used latent class analysis to identify behavioral phenotypes among participants randomized to track physical activity using a smartphone or wearable device for 6 months following hospital discharge. Four phenotypes were identified: (1) more agreeable and conscientious; (2) more active, social, and motivated; (3) more risk-taking and less supported; and (4) less active, social, and risk-taking. We found that duration and consistency of device use differed by phenotype for wearables, but not smartphones. Additionally, “at-risk” phenotypes 3 and 4 were more likely to discontinue use of a wearable device than a smartphone, while activity monitoring in phenotypes 1 and 2 did not differ by device type. These findings could help to better target remote-monitoring interventions for hospitalized patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.