Insulin gene expression is restricted to islet beta cells of the mammalian pancreas through specific control mechanisms mediated in part by specific transcription factors. The protein encoded by the pancreatic and duodenal homeobox gene 1 (PDX-1) is central in regulating pancreatic development and islet cell function. PDX-1 regulates insulin gene expression and is involved in islet cell-specific expression of various genes. Involvement of PDX-1 in islet-cell differentiation and function has been demonstrated mainly by 'loss-of-function' studies. We used a 'gain-of-function' approach to test whether PDX-1 could endow a non-islet tissue with pancreatic beta-cell characteristics in vivo. Recombinant-adenovirus-mediated gene transfer of PDX-1 to the livers of BALB/C and C57BL/6 mice activated expression of the endogenous, otherwise silent, genes for mouse insulin 1 and 2 and prohormone convertase 1/3 (PC 1/3). Expression of PDX-1 resulted in a substantial increase in hepatic immunoreactive insulin content and an increase of 300% in plasma immunoreactive insulin levels, compared with that in mice treated with control adenovirus. Hepatic immunoreactive insulin induced by PDX-1 was processed to mature mouse insulin 1 and 2 and was biologically active; it ameliorated hyperglycemia in diabetic mice treated with streptozotocin. These data indicate the capacity of PDX-1 to reprogram extrapancreatic tissue towards a beta-cell phenotype, may provide a valuable approach for generating 'self' surrogate beta cells, suitable for replacing impaired islet-cell function in diabetics.
Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue.pancreas ͉ transdifferentiation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.