Lung cancer is the leading cause of cancer-related deaths among men and women worldwide. Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are effective therapies for advanced non-small-cell lung cancer (NSCLC) patients harbouring EGFR-activating mutations, but are not curative due to the inevitable emergence of resistances. Recent in vitro studies suggest that resistance to EGFR-TKI may arise from a small population of drug-tolerant persister cells (DTP) through non-genetic reprogramming, by entering a reversible slow-to-non-proliferative state, before developing genetically derived resistances. Deciphering the molecular mechanisms governing the dynamics of the drug-tolerant state is therefore a priority to provide sustainable therapeutic solutions for patients. An increasing number of molecular mechanisms underlying DTP survival are being described, such as chromatin and epigenetic remodelling, the reactivation of anti-apoptotic/survival pathways, metabolic reprogramming, and interactions with their micro-environment. Here, we review and discuss the existing proposed mechanisms involved in the DTP state. We describe their biological features, molecular mechanisms of tolerance, and the therapeutic strategies that are tested to target the DTP.
Although lung cancer patients harboring EGFR mutations benefit from treatment with EGFR‐tyrosine kinase inhibitors (EGFR‐TKI), most of them rapidly relapse. RHOB GTPase is a critical player in both lung carcinogenesis and the EGFR signaling pathway; therefore, we hypothesized that it could play a role in the response to EGFR‐TKI. In a series of samples from EGFR‐mutated patients, we found that low RHOB expression correlated with a good response to EGFR‐TKI treatment while a poor response correlated with high RHOB expression (15.3 versus 5.6 months of progression‐free survival). Moreover, a better response to EGFR‐TKI was associated with low RHOB levels in a panel of lung tumor cell lines and in a lung‐specific tetracycline‐inducible EGFRL
858R transgenic mouse model. High RHOB expression was also found to prevent erlotinib‐induced AKT inhibition in vitro and in vivo. Furthermore, a combination of the new‐generation AKT inhibitor G594 with erlotinib induced tumor cell death in vitro and tumor regression in vivo in RHOB‐positive cells. Our results support a role for RHOB/AKT signaling in the resistance to EGFR‐TKI and propose RHOB as a potential predictor of patient response to EGFR‐TKI treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.