Many plants, including Arabidopsis, increase in freezing tolerance in response to low, nonfreezing temperatures, a phenomenon known as cold acclimation. Previous studies established that cold acclimation involves rapid expression of the CBF transcriptional activators (also known as DREB1 proteins) in response to low temperature followed by induction of the CBF regulon (CBF-targeted genes), which contributes to an increase in freezing tolerance. Here, we present the results of transcriptome-profiling experiments indicating the existence of multiple low-temperature regulatory pathways in addition to the CBF cold response pathway. The transcript levels of ف 8000 genes were determined at multiple times after plants were transferred from warm to cold temperature and in warm-grown plants that constitutively expressed CBF1, CBF2, or CBF3. A total of 306 genes were identified as being cold responsive, with transcripts for 218 genes increasing and those for 88 genes decreasing threefold or more at one or more time points during the 7-day experiment. These results indicate that extensive downregulation of gene expression occurs during cold acclimation. Of the cold-responsive genes, 48 encode known or putative transcription factors. Two of these, RAP2.1 and RAP2.6, were activated by CBF expression and thus presumably control subregulons of the CBF regulon. Transcriptome comparisons indicated that only 12% of the cold-responsive genes are certain members of the CBF regulon. Moreover, at least 28% of the cold-responsive genes were not regulated by the CBF transcription factors, including 15 encoding known or putative transcription factors, indicating that these cold-responsive genes are members of different low-temperature regulons. Significantly, CBF expression at warm temperatures repressed the expression of eight genes that also were downregulated by low temperature, indicating that in addition to gene induction, gene repression is likely to play an integral role in cold acclimation.
Summary The CBF cold response pathway has a prominent role in cold acclimation. The pathway includes action of three transcription factors, CBF1, 2 and 3 (also known as DREB1b, c and a, respectively), that are rapidly induced in response to low temperature followed by expression of the CBF-targeted genes (the CBF regulon) that act in concert to increase plant-freezing tolerance. The results of transcriptome profiling and mutagenesis experiments, however, indicate that additional cold response pathways exist and may have important roles in life at low temperature. To further understand the roles that the CBF proteins play in configuring the low temperature transcriptome and to identify additional transcription factors with roles in cold acclimation, we used the Affymetrix GeneChip containing probe sets for approximately 24,000 Arabidopsis genes to define a core set of cold-responsive genes and to determine which genes were targets of CBF2 and 6 other transcription factors that appeared to be coordinately regulated with CBF2. A total of 514 genes were placed in the core set of cold-responsive genes, 302 of which were upregulated and 212 downregulated. Hierarchical clustering and bioinformatic analysis indicated that the 514 cold-responsive transcripts could be assigned to one of seven distinct expression classes and identified multiple potential novel cis-acting cold-regulatory elements. Eighty-five cold-induced genes and eight cold-repressed genes were assigned to the CBF2 regulon. An additional nine cold-induced genes and 15 cold-repressed genes were assigned to a regulon controlled by ZAT12. Of the 25 core cold-induced genes that were most highly upregulated (induced over 15-fold), 19 genes (84%) were induced by CBF2 and another two genes (8%) were regulated by both CBF2 and ZAT12. Thus, the large majority (92%) of the most highly induced genes belong to the CBF and ZAT12 regulons. Constitutive expression of ZAT12 in Arabidopsis caused a small, but reproducible, increase in freezing tolerance, indicating a role for the ZAT12 regulon in cold acclimation. In addition, ZAT12 downregulated the expression of the CBF genes indicating a role for ZAT12 in a negative regulatory circuit that dampens expression of the CBF cold response pathway.
Flowering of Arabidopsis is promoted by long days and delayed by short days. Mutations in the GIGANTEA (GI) gene delay flowering under long days but have little or no effect under short days. We have now isolated the GI gene and show that it encodes a novel, putative membrane protein. By comparing the sequence of the Arabidopsis gene with that of a likely rice orthologue and by sequencing mutant alleles, we identify regions of the GI protein that are likely to be important for its function. We show that GI expression is regulated by the circadian clock with a peak in transcript levels 8-10 h after dawn. The timing, height and duration of this peak are influenced by daylength. We analysed the interactions between GI and the LHY, CCA1 and ELF3 genes, previously shown to affect daylength responses; we show that the rhythmic pattern of GI expression is altered in the elf3, CCA1-OX and lhy genotypes, and that CCA1 and LHY expression are reduced by gi mutations. Our results are consistent with the idea that GI plays an important role in regulating the expression of flowering time genes during the promotion of flowering by photoperiod.
The Arabidopsis CBF cold response pathway has a central role in cold acclimation, the process whereby plants increase in freezing tolerance in response to low nonfreezing temperatures. Here we examined the changes that occur in the Arabidopsis metabolome in response to low temperature and assessed the role of the CBF cold response pathway in bringing about these modifications. Of 434 metabolites monitored by GC-time-of-flight MS, 325 (75%) were found to increase in Arabidopsis Wassilewskija-2 (Ws-2) plants in response to low temperature. Of these 325 metabolites, 256 (79%) also increased in nonacclimated Ws-2 plants in response to overexpression of C-repeat͞dehydration responsive elementbinding factor (CBF)3. Extensive cold-induced changes also occurred in the metabolome of Arabidopsis Cape Verde Islands-1 (Cvi-1) plants, which were found to be less freezing tolerant than Ws-2 plants. However, low-temperature-induced expression of CBF1, CBF2, CBF3, and CBF-targeted genes was much lower in Cvi-1 than in Ws-2 plants, and the low-temperature metabolome of Cvi-1 plants was depleted in metabolites affected by CBF3 overexpression. Taken together, the results indicate that the metabolome of Arabidopsis is extensively reconfigured in response to low temperature, and that the CBF cold response pathway has a prominent role in this process. Many plants have the ability to sense low temperature and respond by activating mechanisms that lead to an increase in freezing tolerance, an adaptive process known as cold acclimation (1, 2). At present, the best-understood genetic system with a role in cold acclimation is the Arabidopsis CBF cold response pathway (3). Exposing Arabidopsis plants to low temperature results in rapid induction of a small family of genes encoding transcriptional activators known either as C-repeat (CRT)͞dehydration responsive element (DRE)-binding factor (CBF)1, -2, and -3 (4-6) or DREB1b, -c, and -a, respectively (7). These genes encode transcription factors that belong to the AP2͞ERF domain family of DNA-binding proteins (8). The CBF1-3 proteins recognize a cis-acting regulatory element known as the CRT͞DRE present in the promoters of many cold-inducible genes, including COR15a and COR78͞RD29a (4, 9, 10). Expression of the Ͼ100 genes that comprise the CBF regulon, i.e., those cold-regulated genes that are responsive to CBF expression (refs. 11-13; J. Vogel and M.F.T., unpublished data), then brings about an increase in freezing tolerance. This increase in freezing tolerance involves the action of multiple mechanisms, including the production of cryoprotective polypeptides, such as COR15a (14), and synthesis of low molecular-weight cryoprotectants, including proline and raffinose (15,16).Genetic studies suggest that the CBF cold response pathway is not the only system that contributes to freezing tolerance. The eskimo1 mutant of Arabidopsis (17) is constitutively more freezing tolerant than wild-type plants, yet the COR genes are not expressed, indicating that the mutation affects a pathway outside the C...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.