The present study showed short-term elevations in cellular metabolism, alterations in behavior and susceptibility to predation in juvenile rockfish after acute acclimation to CO2-acidification and hypoxic conditions. Physiological and behavioral alterations were restored after 3 weeks suggesting that rockfish possess mechanisms to defend rapid changes in PCO2 and oxygen conditions.
Recruitment of marine fishes is largely determined by biological and environmental factors acting on early‐life stages. Subtle changes in larval condition in response to their environment can result in order‐of‐magnitude differences in year‐class‐strength. Overlap of larval production and favorable feeding conditions drives recruitment for many temperate marine fishes, but challenges associated with studying marine larvae have made it difficult to assess how environmental processes act on individual larvae to affect their growth and survival. We conducted a 2‐yr study in an upwelling system to assess the influence of regional productivity, temperature, and larval condition in explaining growth in rockfishes (Sebastes spp.). We employed otolith microstructure and satellite imagery to measure initial larval growth and estimate the productivity and temperature experienced by individuals to determine their relative importance in subsequent growth at metamorphosis. We compared model performance using indexed environmental conditions scaled over three different regions. In both years, net primary productivity explained the most variation in pre‐metamorphic growth relative to temperature and initial growth. This relationship was consistent across spatial regions, although model fit was highest using indices scaled to the south continental shelf region. Recent settlement, juvenile recruitment, and individual growth were significantly higher in a year when productivity bloomed earlier and individual larvae experienced higher levels of productivity. Thus, this link between regional scale productivity, growth, and subsequent year‐class strength supports the hypothesis that large‐scale oceanographic processes stimulating upwelling and secondary production are primary drivers of larval growth and recruitment in rockfishes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.