Clustered regularly interspaced short palindromic repeats (CRISPRs) are essential components of RNA-guided adaptive immune systems that protect bacteria and archaea from viruses and plasmids. In Escherichia coli, short CRISPR-derived RNAs (crRNAs) assemble into a 405 kDa multi-subunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Here we present the 3.24 Å resolution x-ray crystal structure of Cascade. Eleven proteins and a 61-nucleotide crRNA assemble into a sea-horse-shaped architecture that binds double-stranded DNA targets complementary to the crRNA-guide sequence. Conserved sequences on the 3′- and 5′-ends of the crRNA are anchored by proteins at opposite ends of the complex, while the guide sequence is displayed along a helical assembly of six interwoven subunits that present 5-nucleotide segments of the crRNA in pseudo A-form configuration. The structure of Cascade suggests a mechanism for assembly and provides insights into the mechanisms of target recognition.
Genetic conflict between viruses and their hosts drives evolution and genetic innovation. Prokaryotes evolved CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat)-mediated adaptive immune systems for protection from viral infection and viruses have evolved diverse anti-CRISPR (Acr) proteins that subvert these immune systems. The adaptive immune system in Pseudomonas aeruginosa (type I-F) relies on a 350 kDa CRISPR RNA (crRNA)-guided surveillance complex (Csy complex) to bind foreign DNA and recruit a trans-acting nuclease for target degradation. Here we report the cryo-electron microscopy structure of the Csy complex bound to two different Acr proteins, AcrF1 and AcrF2, at an average resolution of 3.4 Å. The structure explains the molecular mechanism for immune system suppression, and structure-guided mutations show that the Acr proteins bind to residues essential for crRNA-mediated detection of DNA. Collectively, these data provide a snapshot of an ongoing molecular arms race between viral suppressors and the immune system they target.
IL-35 is produced by regulatory T cells, and this novel cytokine can downregulate Th17 cell development and inhibit autoimmune inflammation. In this work, an rIL-35, as a single-chain fusion between murine IL-12p35 and EBV-induced gene 3, was expressed in yeast. This rIL-35 inhibited OVA-specific cellular and Ab responses in OVA-challenged recipients of DO11.10 CD4+ T cells. Likewise, IL-35 inhibited clinical manifestation of collagen-induced arthritis or could cease further disease exacerbation upon initiation of IL-35 treatment. Exogenous IL-35 treatments suppressed Th1 and Th17 cells and promoted CD39 expression by CD4+ T cells. Sorted CD25−CD39+CD4+ T cells from IL-35–treated mice produced IL-10 and, upon adoptive transfer, were sufficiently potent to inhibit subsequent development of inflammation in mice with collagen-induced arthritis, whereas sorted CD25+CD39+ CD4+ T cells showed reduced potency. IL-35 treatments of IL-10−/− mice failed to induce protective CD39+CD4+ T cells, demonstrating the effector role of IL-10 by IL-35 immunosuppression.
Significance Prokaryotes have adaptive immune systems that rely on CRISPRs (clustered regularly interspaced short palindromic repeats) and diverse CRISPR-associated ( cas ) genes. Cas1 and Cas2 are conserved components of CRISPR systems that are essential for integrating fragments of foreign DNA into CRISPR loci. In type I-F immune systems, the Cas2 adaptation protein is fused to the Cas3 interference protein. Here we show that the Cas2/3 fusion protein from Pseudomonas aeruginosa stably associates with the Cas1 adaptation protein, forming a 375-kDa propeller-shaped Cas1–2/3 complex. We show that Cas1, in addition to being an essential adaptation protein, also functions as a repressor of Cas2/3 nuclease activity and that foreign DNA binding by the CRISPR RNA-guided surveillance complex activates the Cas2/3 nuclease.
In bacteria and archaea, short fragments of foreign DNA are integrated into Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) loci, providing a molecular memory of previous encounters with foreign genetic elements. In Escherichia coli, short CRISPR-derived RNAs are incorporated into a multi-subunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Recent structures of Cascade capture snapshots of this seahorse-shaped RNA-guided surveillance complex before and after binding to a DNA target. Here we determine a 3.2 Å x-ray crystal structure of Cascade in a new crystal form that provides insight into the mechanism of double-stranded DNA binding. Molecular dynamic simulations performed using available structures reveal functional roles for residues in the tail, backbone and belly subunits of Cascade that are critical for binding double-stranded DNA. Structural comparisons are used to make functional predictions and these predictions are tested in vivo and in vitro. Collectively, the results in this study reveal underlying mechanisms involved in target-induced conformational changes and highlight residues important in DNA binding and protospacer adjacent motif recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.