We consider the toll design problem that arise for a game designer of a congested stochastic network when the decision makers are myopically updating their strategies based on current system state. If both the designer and the decision makers are adaptively searching for an optimal strategy, it is not clear how and if both parties can attain their optimal strategies. We formulate the toll synthesis problem of inducing an equilibrium distribution that satisfies a given set of design specifications as a bilevel optimization, in which the lower level consists of decision makers playing an Markov decision process (MDP) congestion game. In addition to showing the existence of an optimal tolling threshold, we formulate learning algorithms that can be employed by both the game designer and the players to jointly determine the optimal toll and induced equilibrium, respectively, and analyze its convergence properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.