In this study the ‘Malaria Box’ chemical library comprising 400 compounds with antiplasmodial activity was screened for compounds that perturb the internal pH of the malaria parasite, Plasmodium falciparum. Fifteen compounds induced an acidification of the parasite cytosol. Two of these did so by inhibiting the parasite’s formate nitrite transporter (PfFNT), which mediates the H+-coupled efflux from the parasite of lactate generated by glycolysis. Both compounds were shown to inhibit lactate transport across the parasite plasma membrane, and the transport of lactate by PfFNT expressed in Xenopus laevis oocytes. PfFNT inhibition caused accumulation of lactate in parasitised erythrocytes, and swelling of both the parasite and parasitised erythrocyte. Long-term exposure of parasites to one of the inhibitors gave rise to resistant parasites with a mutant form of PfFNT that showed reduced inhibitor sensitivity. This study provides the first evidence that PfFNT is a druggable antimalarial target.
The Plasmodium falciparum chloroquine resistance transporter (PfCRT) is a key contributor to multidrug resistance and is also essential for the survival of the malaria parasite, yet its natural function remains unresolved. We identify host-derived peptides of 4-11 residues, varying in both charge and composition, as the substrates of PfCRT in vitro and in situ, and show that PfCRT does not mediate the non-specific transport of other metabolites and/or ions. We find that drug-resistance-conferring mutations reduce both the peptide transport capacity and substrate range of PfCRT, explaining the impaired fitness of drug-resistant parasites. Our results indicate that PfCRT transports peptides from the lumen of the parasite's digestive vacuole to the cytosol, thereby providing a source of amino acids for parasite metabolism and preventing osmotic stress of this organelle. The resolution of PfCRT's native substrates will aid the development of drugs that target PfCRT and/or restore the efficacy of existing antimalarials.
The intraerythrocytic malaria parasite relies primarily on glycolysis to fuel its rapid growth and reproduction. The major byproduct of this metabolism, lactic acid, is extruded into the external medium. In this study, we show that the human malaria parasite Plasmodium falciparum expresses at its surface a member of the microbial formate-nitrite transporter family (PfFNT), which, when expressed in Xenopus laevis oocytes, transports both formate and lactate. The transport characteristics of PfFNT in oocytes (pH-dependence, inhibitorsensitivity and kinetics) are similar to those of the transport of lactate and formate across the plasma membrane of mature asexual-stage P. falciparum trophozoites, consistent with PfFNT playing a major role in the efflux of lactate and hence in the energy metabolism of the intraerythrocytic parasite.
Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, are the major determinant of chloroquine resistance in this lethal human malaria parasite. Here, we describe P. falciparum lines subjected to selection by amantadine or blasticidin that carry PfCRT mutations (C101F or L272F), causing the development of enlarged food vacuoles. These parasites also have increased sensitivity to chloroquine and some other quinoline antimalarials, but exhibit no or minimal change in sensitivity to artemisinins, when compared with parental strains. A transgenic parasite line expressing the L272F variant of PfCRT confirmed this increased chloroquine sensitivity and enlarged food vacuole phenotype. Furthermore, the introduction of the C101F or L272F mutation into a chloroquine-resistant variant of PfCRT reduced the ability of this protein to transport chloroquine by approximately 93 and 82%, respectively, when expressed in Xenopus oocytes. These data provide, at least in part, a mechanistic explanation for the increased sensitivity of the mutant parasite lines to chloroquine. Taken together, these findings provide new insights into PfCRT function and PfCRT-mediated drug resistance, as well as the food vacuole, which is an important target of many antimalarial drugs.
Mutations in the Plasmodium falciparum ‘chloroquine resistance transporter’ (PfCRT) confer resistance to chloroquine (CQ) and related antimalarials by enabling the protein to transport these drugs away from their targets within the parasite’s digestive vacuole (DV). However, CQ resistance-conferring isoforms of PfCRT (PfCRTCQR) also render the parasite hypersensitive to a subset of structurally-diverse pharmacons. Moreover, mutations in PfCRTCQR that suppress the parasite’s hypersensitivity to these molecules simultaneously reinstate its sensitivity to CQ and related drugs. We sought to understand these phenomena by characterizing the functions of PfCRTCQR isoforms that cause the parasite to become hypersensitive to the antimalarial quinine or the antiviral amantadine. We achieved this by measuring the abilities of these proteins to transport CQ, quinine, and amantadine when expressed in Xenopus oocytes and complemented this work with assays that detect the drug transport activity of PfCRT in its native environment within the parasite. Here we describe two mechanistic explanations for PfCRT-induced drug hypersensitivity. First, we show that quinine, which normally accumulates inside the DV and therewithin exerts its antimalarial effect, binds extremely tightly to the substrate-binding site of certain isoforms of PfCRTCQR. By doing so it likely blocks the normal physiological function of the protein, which is essential for the parasite’s survival, and the drug thereby gains an additional killing effect. In the second scenario, we show that although amantadine also sequesters within the DV, the parasite’s hypersensitivity to this drug arises from the PfCRTCQR-mediated transport of amantadine from the DV into the cytosol, where it can better access its antimalarial target. In both cases, the mutations that suppress hypersensitivity also abrogate the ability of PfCRTCQR to transport CQ, thus explaining why rescue from hypersensitivity restores the parasite’s sensitivity to this antimalarial. These insights provide a foundation for understanding clinically-relevant observations of inverse drug susceptibilities in the malaria parasite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.