AQP3 (aquaporin-3), known as an integral membrane channel in epidermal keratinocytes, facilitates water and glycerol movement into and out of the skin. Here, we demonstrate that AQP3 is also expressed in cultured human skin fibroblasts, which under normal wound healing processes migrate from surrounding tissues to close the wound. EGF (epidermal growth factor), which induced fibroblast migration, also induced AQP3 expression in a time- and dose-dependent manner. CuSO4 and NiCl2, previously known as AQP3 water transport inhibitors, as well as two other bivalent heavy metals Mn2+ and Co2+, inhibited EGF-induced cell migration in human skin fibroblasts. AQP3 knockdown by small interfering RNA inhibited EGF-induced AQP3 expression and cell migration. Furthermore, an EGFR (EGF receptor) kinase inhibitor, PD153035, blocked EGF-induced AQP3 expression and cell migration. MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK inhibitor U0126 and PI3K (phosphoinositide 3-kinase) inhibitor LY294002 also inhibited EGF-induced AQP3 expression and cell migration. Collectively, our findings show for the first time that AQP3 is expressed in human skin fibroblasts and that EGF induces AQP3 expression via EGFR, PI3K and ERK signal transduction pathways. We have provided evidence for a novel role of AQP3 in human skin fibroblast cell migration, which occurs during normal wound healing.
Ultraviolet radiation (UV) induces cell damages leading to skin photoaging and skin cancer. ATP-sensitive potassium (K(ATP)) channel openers (KCOs) have been shown to exert significant myocardial preservation and neuroprotection in vitro and in vivo, and yet the potential role of those KCOs in protection against UV-induced skin cell damage is unknown. We investigated the effects of pinacidil and diazoxide, two classical KCOs, on UV-induced cell death using cultured human keratinocytes (HaCat cells). Here, we demonstrated for the first time that Kir 6.1, Kir 6.2 and SUR2 subunits of K(ATP) channels are functionally expressed in HaCaT cells and both non-selective K(ATP) channel opener pinacidil and mitoK(ATP) (mitochondrial K(ATP)) channel opener diazoxide attenuated UV-induced keratinocytes cell death. The protective effects were abolished by both non-selective K(ATP) channel blocker glibenclamide and selective mitoK(ATP) channel blocker 5-hydroxydecanoate (5-HD). Also, activation of K(ATP) channel with pinacidil or diazoxide resulted in suppressive effects on UV-induced MAPK activation and reactive oxygen species (ROS) production. Unexpectedly, we found that the level of intracellular ROS was slightly elevated in HaCaT cells when treated with pinacidil or diazoxide alone. Furthermore, UV-induced mitochondrial membrane potential loss, cytochrome c release and ultimately apoptotic cell death were also inhibited by preconditioning with pinacidil and diazoxide, and their effects were reversed by glibenclamide and 5-HD. Taken together, we contend that mitoK(ATP) is likely to contribute the protection against UV-induced keratinocytes cell damage. Our findings suggest that K(ATP) openers such as pinacidil and diazoxide may be utilized to prevent from UV-induced skin aging.
Abstract. Ovarian cancer remains the leading cause of fatality among all gynecologic cancers, although promising therapies are in the making. It has been speculated that metastasis is critical for ovarian cancer, and yet the molecular mechanisms of metastasis in ovarian cancer are poorly understood. Growth factors have been proven to play important roles in cell migration associated with metastasis, and inhibition of growth factor receptors and their distinct cell signaling pathways has been intensively studied, and yet the uncovered interaction or crosstalk among various growth factor receptors complicates this otherwise promising approach. We investigated the crosstalk between EGFR and TrkB, both of which have been known to be important in cell survival and migration in response to EGF and BDNF. Our results showed that both EGF and BDNF induced cell migration and cell proliferation in cultured human ovarian cancer cells (Caov3 cell line). EGF and BDNF transactivated TrkB and EGFR respectively, and activated downstream cell survival components such as Akt. EGFR and TrkB kinase inhibitors inhibited EGF-and BDNF-induced TrkB and EGFR activation and Akt phosphorylation, and cell proliferation and migration. Using EGFR knockout cells, we further demonstrated that EGFR is required for EGF-induced cell migration. Collectively, our data indicate that EGFR and TrkB crosstalk each other in response to EGF and BDNF, leading to cell survival pathway activation in ovarian cancer cells. Our data suggest that a combination of inhibitors of both receptors with cell survival pathway inhibitors would provide a better outcome in the clinical treatment of ovarian cancer.
Trichostatin A (TSA), a hydroxamate-type inhibitor of mammalian histone deacetylases, is emerging as one of a potentially new class of anticancer agents. TSA is known to act by promoting the acetylation of histones, leading to uncoiling of chromatin and activation of a variety of genes implicated in the regulation of cell survival, proliferation, differentiation, and apoptosis. In addition, there is an increasing appreciation of the fact that TSA may act through mechanisms other than induction of histone acetylation. Accumulated experimental data indicate that TSA activates phosphatidyl inositol-3-kinase (PI3K)/AKT signaling. Using human ovarian cancer cell line Caov3 cells, we observed that TSA induced cell death in a time-and dose-dependent manner and also inhibited cell migration. TSA transiently activated EGFR tyrosine phosphorylation and AKT activation in a time-and dose-dependent manner, which had been inhibited by EGFR inhibitor PD153035 and PI3 kinase inhibitor LY294002. We also observed that TSA transiently induced survivin expression that had been inhibited by PD153035 and LY294002, suggesting that TSA-induced survivin expression is mediated by EGFR/PI3 kinase pathway. Combination of EGFR inhibitor 153035 or PI3 kinase inhibitor LY294002 with TSA enhanced TSA-induced cell death and TSA reduction of cell migration. Collectively, our data demonstrate that TSA transiently activated EGFR/PI3K/AKT cell survival pathway, leading to expression of survivin. Inhibition of this pathway enhanced TSA-induced cell death and inhibited cell migration. Our data suggest that combination of EGFR/PI3K/AKT cell survival pathway inhibitors with TSA be a better approach to ovarian cancer treatment.
Previously, we proposed that combination of paclitaxel and membrane permeable ceramide would enhance the killing of cancer cells, and we reported that combination did increase cell death of head and neck, and leukemic cancer cells. In this study, we used paclitaxel and ceramide at the concentration of clinical relevance to treat pancreatic cancer cells (L3.6 cells). To further understand the mechanism of the synergism of paclitaxel and ceramide, we treated cells with paclitaxel, ceramide, or combo. Westernblot analysis results indicated that the combo synergistically induced ERK and JNK but not P38 and Akt phosphorylation. We also found that the combo induced EGFR phosphorylation in a synergistic manner. Furthermore, we found that paclitaxel, ceramide, or combo‐induced EGFR phosphorylation was inhibited by EGFR inhibitor, PD153035, while paclitaxel, ceramide, or combo‐induced JNK and ERK phosphorylation was blocked by EGFR inhibitor, PD153035 and ERK inhibitor, U0126. Taken together, our results have shown that combination of paclitaxel and ceramide synergistically induced pacreatic cancer cell death through differential activation of EGFR‐mediated MAP kinases. EGFR and ERK inhibitors may further enhance the paclitaxel and ceramide effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.