Patients with a history of hypertensive disorders of pregnancy (HDP) suffer higher rates of long-term cardiovascular events including heart failure, coronary artery disease, and stroke. Cardiovascular changes during pregnancy can act as a natural stress test, subsequently unmasking latent cardiovascular disease in the form of HDP. Because HDP now affect 10% of pregnancies in the United States, the American Heart Association has called for physicians who provide peripartum care to promote early identification and cardiovascular risk reduction. In this review, we discuss the epidemiology, pathophysiology, and outcomes of HDP-associated cardiovascular disease. In addition, we propose a multi-pronged approach to support cardiovascular risk reduction for women with a history of HDP. Additional research is warranted to define appropriate blood pressure targets in the postpartum period, optimize the use of pregnancy history in risk stratification tools, and clarify the effectiveness of preventive interventions. The highest rates of HDP are in populations with poor access to resources and quality health care, making it a major risk for inequity of care. Interventions to decrease long-term cardiovascular disease risk in women following HDP must also target disparity reduction.
Background
Preeclampsia is a prominent risk factor for long‐term development of cardiovascular disease. Although existing studies report a strong correlation between preeclampsia and heart failure, the underlying mechanisms are poorly understood. One possibility is the glycoprotein growth factor activin A. During pregnancy, elevated activin A levels are associated with impaired cardiac global longitudinal strain at 1 year, but whether these changes persist beyond 1 year is not known. We hypothesized that activin A levels would remain increased more than 1 year after a preeclamptic pregnancy and correlate with impaired cardiac function.
Methods and Results
To test our hypothesis, we performed echocardiograms and measured activin A levels in women approximately 10 years after an uncomplicated pregnancy (n=25) or a pregnancy complicated by preeclampsia (n=21). Compared with women with a previously normal pregnancy, women with preeclampsia had worse global longitudinal strain (−18.3% versus −21.3%,
P
=0.001), left ventricular posterior wall thickness (0.91 mm versus 0.80 mm,
P
=0.003), and interventricular septal thickness (0.96 mm versus 0.81 mm,
P
=0.0002). Women with preeclampsia also had higher levels of activin A (0.52 versus 0.37 ng/mL,
P
=0.02) and activin/follistatin‐like 3 ratio (0.03 versus 0.02,
P
=0.04). In a multivariable model, the relationship between activin A levels and worsening global longitudinal strain persisted after adjusting for age at enrollment, mean arterial pressure, race, and body mass index (
P
=0.003).
Conclusions
Our findings suggest that both activin A levels and global longitudinal strain are elevated 10 years after a pregnancy complicated by preeclampsia. Future studies are needed to better understand the relationship between preeclampsia, activin A, and long‐term cardiac function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.