IntroductionDelaying care-seeking for tuberculosis (TB) symptoms is a major contributor to mortality, leading to worse outcomes and spread. To reduce delays, it is essential to identify barriers to care-seeking and target populations most at risk of delaying. Previous work identifies barriers only in people within the health system, often long after initial care-seeking.MethodsWe conducted a community-based survey of 84 625 households in Chennai, India, to identify 1667 people with TB-indicative symptoms in 2018–2019. Cases were followed prospectively to observe care-seeking behaviour. We used a comprehensive survey to identify care-seeking drivers, then performed multivariate analyses to identify care-seeking predictors. To identify profiles of individuals most at risk to delay care-seeking, we segmented the sample using unsupervised clustering. We then estimated the per cent of the TB-diagnosed population in Chennai in each segment.ResultsDelayed care-seeking characteristics include smoking, drinking, being employed, preferring different facilities than the community, believing to be at lower risk of TB and believing TB is common. Respondents who reported fever or unintended weight loss were more likely to seek care. Clustering analysis revealed seven population segments differing in care-seeking, from a retired/unemployed/disabled cluster, where 70% promptly sought care, to a cluster of employed men who problem-drink and smoke, where only 42% did so. Modelling showed 54% of TB-diagnosed people who delay care-seeking might belong to the latter segment, which is most likely to acquire TB and least likely to promptly seek care.ConclusionInterventions to increase care-seeking should move from building general awareness to addressing treatment barriers such as lack of time and low-risk perception. Care-seeking interventions should address specific beliefs through a mix of educational, risk perception-targeting and social norms-based campaigns. Employed men who problem-drink and smoke are a prime target for interventions. Reducing delays in this group could dramatically reduce TB spread.
IntroductionImproving the quality of care during childbirth is essential for reducing neonatal and maternal mortality. One barrier to improving quality of care is understanding the appropriate level to target interventions. We examine quality of care data during labour and delivery from multiple countries to assess whether quality varies primarily from nurse to nurse within the same facility, or primarily between facilities.MethodsTo assess the relative contributions of nurses and facilities to variance in quality of care, we performed a variance decomposition analysis using a linear mixed effect model on two data sources: (1) the number of vital signs assessed for women in labour from a study of nurse practices in Uttar Pradesh, India; 2) broad-scale indices of respectful and competent care generated from Service Provision Assessments in Kenya and Malawi. We used unsupervised clustering, a data mining technique that groups objects together based on similar characteristics, to identify groups of facilities that displayed distinct patterns of vital signs assessment behaviour.ResultsWe found 3–10 times more variance in quality of care was explained by the facility where a patient received care than by the nurse who provided it. The unsupervised clustering analysis revealed groups of facilities with highly distinct patterns of vital signs assessment, even when overall rates of vital signs assessments were similar (eg, some facilities consistently test fetal heart rate, but not other vitals, others only blood pressure).ConclusionFacilities within a region can vary substantially in the quality of care they provide to women in labour, but within a facility, nurses tend to provide similar care. This holds true both for care that can be influenced by equipment availability and technical training (eg, vital signs assessment), as well as cultural aspects (eg, respectful care).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.