During mitosis, the recruitment of spindle-checkpoint-associated proteins to the kinetochore occurs in a defined order. The protein kinase Bub1 localizes to the kinetochore very early during mitosis, followed by Cenp-F, BubR1, Cenp-E and finally Mad2. Using RNA interference, we have investigated whether this order of binding reflects a level of dependency in human somatic cells. Specifically, we show that Bub1 plays a key role in the assembly of checkpoint proteins at the kinetochore, being required for the subsequent localization of Cenp-F, BubR1, Cenp-E and Mad2. In contrast to studies in Xenopus, we also show that BubR1 is not required for kinetochore localization of Bub1. Repression of Bub1 increases the number of cells with lagging chromosomes at metaphase, suggesting that Bub1 plays a role in chromosome congression. However, repression of Bub1 does not appear to compromise spindle checkpoint function either during normal mitosis or in response to spindle damage. This raises the possibility that, in the absence of Bub1, other mechanisms contribute to spindle checkpoint function.
Cenp-F is an unusual kinetochore protein in that it localizes to the nuclear matrix in interphase and the nuclear envelope at the G2/M transition; it is farnesylated and rapidly degraded after mitosis. We have recently shown that farnesylation of Cenp-F is required for G2/M progression, its localization to kinetochores, and its degradation. However, the role Cenp-F plays in mitosis has remained enigmatic. Here we show that, following repression of Cenp-F by RNA interference (RNAi), the processes of metaphase chromosome alignment, anaphase chromosome segregation and cytokinesis all fail. Although kinetochores attach to microtubules in Cenp-F-deficient cells, the oscillatory movements that normally occur following K-fibre formation are severely dampened. Consistently, inter-kinetochore distances are reduced. In addition, merotelic associations are observed, suggesting that whereas kinetochores can attach microtubules in the absence of Cenp-F, resolving inappropriate interactions is inhibited. Repression of Cenp-F does not appear to compromise the spindle checkpoint. Rather, the chromosome alignment defect induced by Cenp-F RNA interference is accompanied by a prolonged mitosis, indicating checkpoint activation. Indeed, the prolonged mitosis induced by Cenp-F RNAi is dependent on the spindle checkpoint kinase BubR1. Surprisingly, chromosomes in Cenp-F-deficient cells frequently show a premature loss of chromatid cohesion. Thus, in addition to regulating kinetochore-microtubule interactions, Cenp-F might be required to protect centromeric cohesion prior to anaphase commitment. Intriguingly, whereas most of the sister-less kinetochores cluster near the spindle poles, some align at the spindle equator, possibly through merotelic or lateral orientations.
Background:The Ras/RAF/MEK/ERK pathway is frequently deregulated in cancer and a number of inhibitors that target this pathway are currently in clinical development. It is likely that clinical testing of these agents will be in combination with standard therapies to harness the apoptotic potential of both the agents. To support this strategy, it has been widely observed that a number of chemotherapeutics stimulate the activation of several intracellular signalling cascades including Ras/RAF/MEK/ERK. The MEK1/2 inhibitor selumetinib has been shown to have anti-tumour activity and induce apoptotic cell death as a monotherapy.Methods:The aim of this study was to identify agents, which would be likely to offer clinical benefit when combined with selumetinib. Here, we used human tumour xenograft models and assessed the effects combining standard chemotherapeutic agents with selumetinib on tumour growth. In addition, we analysed tumour tissue to determine the mechanistic effects of these combinations.Results:Combining selumetinib with the DNA-alkylating agent, temozolomide (TMZ), resulted in enhanced tumour growth inhibition compared with monotherapies. Biomarker studies highlighted an increase in γH2A.X suggesting that selumetinib is able to enhance the DNA damage induced by TMZ alone. In several models we observed that continuous exposure to selumetinib in combination with docetaxel results in tumour regression. Scheduling of docetaxel before selumetinib was more beneficial than when selumetinib was dosed before docetaxel and demonstrated a pro-apoptotic phenotype. Similar results were seen when selumetinib was combined with the Aurora B inhibitor barasertib.Conclusion:The data presented suggests that MEK inhibition in combination with several standard chemotherapeutics or an Aurora B kinase inhibitor is a promising clinical strategy.
The mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase/AKT signaling pathways interact at multiple nodes in cancer, including at mTOR complexes, suggesting an increased likelihood of redundancy and innate resistance to any therapeutic effects of single pathway inhibition. In this study, we investigated the therapeutic effects of combining the MAPK extracellular signal-regulated kinase (MEK)1/2 inhibitor selumetinib (AZD6244) with the dual mTORC1 and mTORC2 inhibitor (AZD8055). Concurrent dosing in nude mouse xenograft models of human lung adenocarcinoma (non-small cell lung cancers) and colorectal carcinoma was well tolerated and produced increased antitumor efficacy relative to the respective monotherapies. Pharmacodynamic analysis documented reciprocal pathway inhibition associated with increased apoptosis and Bim expression in tumor tissue from the combination group, where key genes such as DUSP6 that are under MEK functional control were also modulated. Our work offers a strong rationale to combine selumetinib and AZD8055 in clinical trials as an attractive therapeutic strategy. Cancer Res; 72(7);
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.