Highlights d The gut microbiome induces the Nrf2 antioxidant response pathway in the liver d Gut-resident Lactobacilli induce hepatic Nrf2 in both Drosophila and mice d Oral delivery of Lactobacillus rhamnosus GG protects against oxidative liver injury d Lactobacilli-derived 5-methoxyindoleacetic acid activates Nrf2
Obesity and obesity-related metabolic disorders are linked to the intestinal microbiome. However, the causality of changes in the microbiome-host interaction affecting energy metabolism remains controversial. Here, we show the microbiome-derived metabolite δ-valerobetaine (VB) is a diet-dependent obesogen that is increased with phenotypic obesity and is correlated with visceral adipose tissue mass in humans. VB is absent in germ-free mice and their mitochondria but present in ex-GF conventionalized mice and their mitochondria. Mechanistic studies
in vivo
and
in vitro
show VB is produced by diverse bacterial species and inhibits mitochondrial fatty acid oxidation through decreasing cellular carnitine and mitochondrial long-chain acyl-CoAs. VB administration to germ-free and conventional mice increases visceral fat mass and exacerbates hepatic steatosis with Western diet but not control diet. Thus, VB provides a molecular target to understand and potentially manage microbiome-host symbiosis/dysbiosis in diet-dependent obesity.
A multidimensional inflammatory response ensues after status epilepticus (SE), driven partly by cyclooxygenase-2-mediated activation of prostaglandin EP2 receptors. The inflammatory response is typified by astrocytosis, microgliosis, erosion of the blood-brain barrier (BBB), formation of inflammatory cytokines, and brain infiltration of blood-borne monocytes. Our previous studies have shown that inhibition of monocyte brain invasion or systemic administration of an EP2 receptor antagonist relieves multiple deleterious consequences of SE. Here we identify those effects of EP2 antagonism that are reproduced by conditional ablation of EP2 receptors in immune myeloid cells and show that systemic EP2 antagonism blocks monocyte brain entry in male mice. The induction of hippocampal IL-6 after pilocarpine SE was nearly abolished in EP2 conditional KO mice. Serum albumin levels in the cortex, a measure of BBB breakdown, were significantly higher after SE in EP2-sufficient mice but not in EP2 conditional KOs. EP2 deficiency in innate immune cells accelerated the recovery from sickness behaviors following SE. Surprisingly, neurodegeneration was not alleviated in myeloid conditional KOs. Systemic EP2 antagonism prevented monocyte brain infiltration and provided broader rescue of SE-induced effects than myeloid EP2 ablation, including neuroprotection and broader suppression of inflammatory mediators. Reporter expression indicated that the cellular target of CD11b-driven Cre was circulating myeloid cells but, unexpectedly, not microglia. These findings indicate that activation of EP2 receptors on immune myeloid cells drives substantial deficits in behavior and disrupts the BBB after SE. The benefits of systemic EP2 antagonism can be attributed, in part, to blocking brain recruitment of blood-borne monocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.