Next-generation sequencing provides an opportunity for an in-depth biocomputational analysis to identify gene expression patterns between soleus and tibialis anterior, two well-characterized skeletal muscles, and analyze their gene expression profiling. RNA read counts were analyzed for differential gene expression using the R package edgeR. Differentially expressed genes were filtered using a false discovery rate of less than 0.05 c, a fold-change value of more than twenty, and an association with overrepresented pathways based on the Reactome pathway over-representation analysis tool. Most of the differentially expressed genes associated with soleus are coded for components of lipid metabolism and unique contractile elements. Differentially expressed genes associated with tibialis anterior encoded mostly for glucose and glycogen metabolic pathway regulatory enzymes and calcium-sensitive contractile components. These gene expression distinctions partly explain the genetic basis for skeletal muscle specialization, and they may help to explain skeletal muscle susceptibility to disease and drugs and further refine tissue engineering approaches.
Soleus and tibialis anterior are two well-characterized skeletal muscles commonly utilized in skeletal muscle-related studies. Next-generation sequencing provides an opportunity for an in-depth biocomputational analysis to identify the gene expression patterns between soleus and tibialis anterior and analyze those genes’ functions based on past literature. This study acquired the gene expression profiles from soleus and tibialis anterior murine skeletal muscle biopsies via RNA-sequencing. Read counts were processed through edgeR’s differential gene expression analysis. Differentially expressed genes were filtered down using a false discovery rate less than 0.05c, a fold-change value larger than twenty, and an association with overrepresented pathways based on the Reactome pathway over-representation analysis tool. Most of the differentially expressed genes associated with soleus encoded for components of lipid metabolism and unique contractile elements. Differentially expressed genes associated with tibialis anterior encoded mostly for glucose and glycogen metabolic pathways’ regulatory enzymes and calcium-sensitive contractile components. These gene expression distinctions partly explain the genetic basis for muscle specialization and may help to explain skeletal muscle susceptibility to disease and drugs and refine tissue engineering approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.