Background: There is a negative relationship between education and religiosity and a positive relationship between education and acceptance of evolution, but how this manifests in college students who differ in degree of religiosity and prior educational experiences is unclear. We focused our study on the relative importance of education and religion on evolution understanding for college students at a large, public university in the Deep South. Methods: We used a structural equation model incorporating both acceptance and knowledge of evolution to evaluate the relative influence of religion and education on evolution understanding of 2,999 surveyed students. We further focused on acceptance of evolution and academic level, college major, high school experience, religion, and religiosity. We conducted pre and post course evaluations in three biology classes, and finally we tested the relationships between the quality of K-12 state science standards and states' religiosity and educational attainment. Results: We found that the degree of religiosity mattered significantly more than education when predicting students' understanding of evolution. When we focused on acceptance of evolution only, students taught evolution or neither evolution nor creationism in high school had significantly higher acceptance than those taught both evolution and creationism or just creationism. Science majors always outscored non-science majors, and not religious students significantly outperformed religious students. Highly religious students were more likely to reject evolution even though they understood that the scientific community accepted the theory of evolution. Overall, students in two of three biology classes increased their acceptance of evolution, but only those students that seldom/never attended religious services improved. K-12 state science standard grades were significantly and negatively correlated with measures of state religiosity and significantly and positively correlated with measures of state educational attainment.
The core-periphery hypothesis (CPH) predicts that populations located at the periphery of a species' range should have lower levels of genetic variation than those at the centre of the range. However, most of the research on the CPH focuses on geographic distance and not on ecological distance, or uses categorical definitions of core and periphery to explain the distribution of genetic diversity. We use current climate data and historical climate data from the last glacial maxima to develop quantitative estimates of contemporary and historical ecological suitability using ecological niche models. We analysed genetic diversity using 12 polymorphic microsatellites to estimate changes in heterozygosity, allelic richness and population differentiation in 31 populations of the wood frog (Lithobates sylvaticus) spanning the species' entire eastern clade (33(o) to 45(o) latitude) from Alabama, USA, to Nova Scotia, Canada. Our data support predictions based on the CPH. Populations showed significant differences in genetic diversity across the range, with lower levels of genetic variation at the geographic range edge and in areas with lower levels of historical and contemporary ecological suitability. However, history and geography (not current ecological suitability) best explain the patterns. This study highlights the importance of examining more than just geography when assessing the CPH, and the importance of historical ecological suitability in the maintenance of genetic diversity and population differentiation.
The evolution of sociality remains a challenge in evolutionary biology and a central question is whether association between kin is a critical factor favouring the evolution of cooperation. This study examines genetic structure of Anelosimus studiosus, a spider exhibiting polymorphic social behaviour. Two phenotypes have been identified: an 'asocial' phenotype with solitary female nests and a 'social' phenotype with multi-female/communal nests. To address the questions of whether these phenotypes are differentiated populations and whether cooperative individuals are closely related, we used microsatellites to analyse individuals from both communal and solitary nests. We found no evidence of differentiation between social and solitary samples, implying high rates of interbreeding. This is consistent with the hypothesis that these phenotypes coexist as a behavioural polymorphism within populations. Pairwise relatedness coefficients were used to test whether cooperating individuals are more closely related than expected by chance. Pairwise relatedness of females sharing communal webs averaged 0.25, the level expected for half-siblings and significantly more closely related than random pairs from the population. Solitary females collected at similar distances to the communal spider pairs were also more closely related than expected by chance (mean relatedness = 0.18), but less related than social pairs. These results imply that low dispersal contributes to increase likelihood of interaction between kin, but relatedness between social pairs is not explained by spatial structure alone. We propose that these phenotypes represent stages in the evolution of sociality, where viscous population structure creates opportunities for kin selection and cooperation is favoured under certain environmental conditions.
One of the major challenges for conservation physiologists is to determine how current or future environmental conditions relate to the health of animals at the population level. In this study, we measured prevalence of disease, mean condition of the body, and mean resting levels of corticosterone and testosterone in a total of 28 populations across the years 2011 and 2012, and correlated these measures of health to climatic suitability of habitat, using estimates from a model of the ecological niche of the wood frog's geographic range. Using the core-periphery hypothesis as a theoretical framework, we predicted a higher prevalence and intensity of infection of Batrachochytrium dendrobatidis (Bd) and ranaviruses, two major amphibian pathogens causing disease, and higher resting levels of circulating corticosterone, an indicator of allostatic load incurred from living in marginal habitats. We found that Bd infections were rare (2% of individuals tested), while infections with ranavirus were much more common: ranavirus-infected individuals were found in 92% of ponds tested over the 2 years. Contrary to our predictions, rates of infection with ranaviruses were positively correlated with quality of the habitat with the highest prevalence at the core of the range, and plasma corticosterone concentrations measured when frogs were at rest were not correlated with quality of the habitat, the prevalence of ranavirus, or the intensity of infection. Prevalence and mean viral titers of ranavirus infection were higher in 2012 than in 2011, which coincided with lower levels of circulating corticosterone and testosterone and an extremely early time of breeding due to relatively higher temperatures during the winter. In addition, the odds of having a ranavirus infection increased with decreased body condition, and if animals had an infection, viral titers were positively correlated to levels of circulating testosterone concentration. By resolving these patterns, experiments can be designed to test hypotheses about the mechanisms that produce them, such as whether transmission of the ranavirus and tolerance of the host are greater or whether virulence is lower in populations within core habitats. While there is debate about which metrics serve as the best bioindicators of population health, the findings of this study demonstrate the importance of long-term monitoring of multiple physiological parameters to better understand the dynamic relationship between the environment and the health of wildlife populations over space and time.
The study of combinatorics on words, or finite sequences of symbols from a finite alphabet, finds applications in several areas of biology, computer science, mathematics, and physics. Molecular biology, in particular, has stimulated considerable interest in the study of combinatorics on partial words that are sequences that may have a number of "do not know" symbols also called "holes". This paper is devoted to a fundamental result on periods of words, the critical factorization theorem, which states that the period of a word is always locally detectable in at least one position of the word resulting in a corresponding critical factorization. Here, we describe precisely the class of partial words w with one hole for which the weak period is locally detectable in at least one position of w. Our proof provides an algorithm which computes a critical factorization when one exists. A World Wide Web server interface at http://www.uncg.edu/mat/cft/ has been established for automated use of the program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.