The emerging wireless body area networks (WBANs) have a great potential for the growth and development of future ubiquitous healthcare systems. However, due to the use of unreliable wireless media, WBANs are exposed to a variety of attacks. The prevention of these attacks depends upon the cryptographic techniques. The strength of cryptography is based on the keys used for encryption and decryption in the communication process. Security is still an alarming challenge for WBANs and needs attention of the research community. The proposed work introduces a hybrid key management scheme for both intra-WBAN and inter-WBAN communications. The proposed technique is based on preloaded keys as well as keys automatically generated from biometrics of the human body. The biometric-based calculations are of linear time complexity to cater the strict resource constraints and security requirements of WBANs. The proposed security mechanism provides an efficient solution for the security of both intra-WBAN and inter-WBAN communications. The results of the proposed technique are compared with an existing key management technique known as BARI+. The results show significant improvement over the results produced by BARI+ in terms of storage, communication, energy overhead, and security.
As 5th Generation research reaches the twilight, the research community must go beyond 5G and look towards the 2030 connectivity landscape, namely 6G. In this context, this work takes a step towards the 6G vision by proposing a next generation communication platform, which aims to extend the rigid coverage area of fixed deployment networks by considering virtual mobile small cells (MSC) that are created on demand. Relying on emerging computing paradigms such as NFV (Network Function Virtualization) and SDN (Software Defined Networking), these cells can harness radio and networking capability locally reducing protocol signaling latency and overhead. These MSCs constitute an intelligent pool of networking resources that can collaborate to form a wireless network of MSCs providing a communication platform for localized, ubiquitous and reliable connectivity. The technology enablers for implementing the MSC concept are also addressed in terms of virtualization, lightweight wireless security, and energy efficient RF. The benefits of the MSC architecture towards reliable and efficient cell offloading are demonstrated as a use-case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.