The psychostimulant methamphetamine (METH) is an addictive illicit drug. Systemic administration of the neuropeptide oxytocin modulates METH-related reward and METH-seeking behaviour. Recent findings demonstrated a reduction in METH-induced reward by oxytocin administration into the nucleus accumbens (NAc) core. It is not known, however, if oxytocin acts in this region to reduce relapse to METH-seeking behaviour. Using the drug reinstatement paradigm in rats experienced at METH self-administration, we aimed to determine whether oxytocin pre-treatment within the NAc core would reduce relapse to METH use and if this could be reversed by the co-administration of the oxytocin receptor (OTR) antagonist desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT. Male Sprague-Dawley rats underwent surgery to implant an intravenous jugular vein catheter and bilateral microinjection cannulae in the NAc core. Rats were then trained to self-administer intravenous METH (0.1 mg/kg/infusion) by lever press during 2-hour fixed ratio 1 scheduled sessions for 20 days. Following extinction of lever press activity, the effect of microinjecting saline, oxytocin (0.5 pmol, 1.5 pmol, 4.5 pmol) or co-administration of oxytocin (1.5 pmol) and desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT (1 nmol, 3 nmol) in the NAc core (500 nl/side) was examined on METH-primed (1 mg/kg, i.p.) reinstatement of drug-seeking behaviour. Our results showed oxytocin directly administered into the NAc core decreased METH-primed reinstatement in a dose-dependent manner. Co-administration of the selective OTR antagonist did not specifically reverse the inhibitory effects of oxytocin on METH priming, suggesting mediation by receptors other than the OTR. These findings highlight an important modulatory effect of oxytocin in the NAc core on relapse to METH seeking.
Background: Methamphetamine is an addictive stimulant that can cause many adverse physical, psychological and psychosocial effects. Preliminary evidence shows cannabidiol, a non-intoxicating constituent of the cannabis plant, may have efficacy in treating opioid and nicotine dependence. However, no study has yet examined whether cannabidiol treatment might impact on methamphetamine addiction. Aims: The current study investigated whether cannabidiol administration reduces the motivation to self-administer methamphetamine and relapse to methamphetamine-seeking behavior following abstinence. Methods: Thirty-two male Sprague Dawley rats with implanted jugular vein catheters were initially trained to self-administer methamphetamine via lever press during two-hour sessions on a fixed ratio 1 schedule of reinforcement. Rats in experiment 1 (n=16) then advanced to a progressive ratio reinforcement schedule to examine the effects of cannabidiol (0, 20, 40, and 80 mg/kg intraperitoneal) on motivation to self-administer methamphetamine. Rats in experiment 2 (n=16) were tested for cannabidiol effects on methamphetamine-primed reinstatement following extinction. Results: Cannabidiol (80 mg/kg, but not 40 mg/kg, or 20 mg/kg) reduced the motivation to self-administer methamphetamine and attenuated methamphetamine-primed relapse to methamphetamine-seeking behavior after extinction. Conclusion: This is the first demonstration that cannabidiol can reduce the motivation to seek and consume methamphetamine, and suggests that cannabidiol might be worth trialing as a novel pharmacotherapy for methamphetamine dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.