Aims The present study is designed to consider a role for the circadian clock protein Per1 in the regulation of the endothelin axis in mouse kidney, lung, liver and heart. Renal endothelin-1 (ET-1) is a regulator of the epithelial sodium channel (ENaC) and blood pressure (BP), via activation of both endothelin receptors, ETA and ETB. However, ET-1 mediates many complex events in other tissues. Main methods Tissues were collected in the middle of murine rest and active phases, at noon and midnight, respectively. ET-1, ETA and ETB mRNA expressions were measured in the lung, heart, liver, renal inner medulla and renal cortex of wild type and Per1 heterozygous mice using real-time quantitative RT-PCR. Key findings The effect of reduced Per1 expression on levels of mRNAs and the time-dependent regulation of expression of the endothelin axis genes appeared to be tissue-specific. In the renal inner medulla and the liver, ETA and ETB exhibited peaks of expression in opposite circadian phases. In contrast, expressions of ET-1, ETA and ETB in the lung did not appear to vary with time, but ET-1 expression was dramatically decreased in this tissue in Per1 heterozygous mice. Interestingly, ET-1 and ETA, but not ETB, were expressed in a time-dependent manner in the heart. Significance Per1 appears to regulate expression of the endothelin axis genes in a tissue-specific and time-dependent manner. These observations have important implications for our understanding of the best time of day to deliver endothelin receptor antagonists.
The studies of PGE2 (prostaglandin E2) biosynthesis have focused primarily on the role of cyclo-oxygenases. Efforts have shifted towards the specific PGE2 terminal synthases, particularly mPGES-1 (microsomal PGE synthase 1), which has emerged as the crucial inducible synthase with roles in pain, cancer and inflammation. mPGES-1 is induced by pro-inflammatory cytokines with studies focusing on the proximal promoter, mediated specifically through Egr-1 (early growth-response factor 1). Numerous studies demonstrate that the mPGES-1 promoter (PTGES) alone cannot account for the level of IL-1β (interleukin 1β) induction. We identified two DNase I-hypersensitive sites within the proximal promoter near the Egr-1 element and a novel distal site near -8.6 kb. Functional analysis of the distal site revealed two elements that co-operate with basal promoter expression and a stimulus-dependent enhancer. A specific binding site for C/EBPβ (CCAAT/enhancer-binding protein β) in the enhancer was directly responsible for inducible enhancer activity. ChIP (chromatin immunoprecipitation) analysis demonstrated constitutive Egr-1 binding to the promoter and induced RNA polymerase II and C/EBPβ binding to the promoter and enhancer respectively. Knockout/knockdown studies established a functional role for C/EBPβ in mPGES-1 gene regulation and the documented interaction between Egr-1 and C/EBPβ highlights the proximal promoter co-operation with a novel distal enhancer element in regulating inducible mPGES-1 expression.
Endothelin-1 (ET-1) is a peptide hormone that functions as a vasoconstrictor in the vasculature, whereas in the collecting duct of the kidney it exerts blood pressurelowering effects via natriuretic actions. Aberrant ET-1 signaling is associated with several pathological states including hypertension and chronic kidney disease. ET-1 expression is regulated largely through transcriptional control of the gene that encodes ET-1, EDN1. Here we report a long, non-coding RNA (lncRNA) that appears to be antisense to the EDN1 gene, called EDN1-AS. Because EDN1-AS represents a potential novel mechanism to regulate ET-1 expression, we examined the regulation of EDN1-AS expression and action. A putative glucocorticoid receptor response (GR) element upstream of the predicted EDN1-AS transcription start site was identified using the ENCODE database and the UCSC genome browser. Two homozygous deletion clones of the element were generated using CRISPR/Cas9. This deletion resulted in a significant increase in the expression of EDN1-AS, which was associated with increased secretion of ET-1 peptide from HK-2 cells (two-fold increase in KO cells vs. CNTL, n = 7, P < 0.05). Phenotypic characterization of these CRISPR clones revealed a difference in cell growth rates. Using a standard growth assay, we determined that the KO1 clone exhibited a three-fold increase in growth over 8 days compared to control cells (n = 4, P < 0.01) and the KO2 clone exhibited a two-fold increase (n = 4, P < 0.01). These results support a role for EDN1-AS as a novel regulatory mechanism of ET-1 expression and cellular proliferation.
Manganese superoxide dismutase (MnSOD), a critical anti-oxidant enzyme, detoxifies the mitochondrial-derived reactive oxygen species, superoxide, elicited through normal respiration or the inflammatory response. Proinflammatory stimuli induce MnSOD gene expression through a eutherian-conserved, intronic enhancer element. We identified two prototypic enhancer binding proteins, TEAD1 and p65, that when co-expressed induce MnSOD expression comparable to pro-inflammatory stimuli. TEAD1 causes the nuclear sequestration of p65 leading to a novel TEAD1/p65 complex that associates with the intronic enhancer and is necessary for cytokine induction of MnSOD. Unlike typical NF-κB-responsive genes, the induction of MnSOD does not involve p50. Beyond MnSOD, the TEAD1/p65 complex regulates a subset of genes controlling the innate immune response that were previously viewed as solely NF-κB-dependent. We also identified an enhancer-derived RNA (eRNA) that is induced by either proinflammatory stimuli or the TEAD1/p65 complex, potentially linking the intronic enhancer to intra- and interchromosomal gene regulation through the inducible eRNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.