SummaryT-cell stimulating protein A (TspA) is an immunogenic, T-cell and B-cell stimulating protein of Neisseria meningitidis. Sequence similarity between TspA and FimV, a Pseudomonas aeruginosa protein involved in twitching motility, suggested a link between TspA and type IV pili (Tfp). To determine the role of TspA an isogenic deletion mutant was created. Loss of TspA did not affect twitching motility or piliation indicating that there are functional differences between TspA and FimV. Mutation of tspA led to a significant reduction in adhesion of meningococci to meningothelial and HEp-2 cells, which was not due to a lack of transcription of adjacent genes or pilC1. Other Tfp-mediated phenotypes (i.e. auto-aggregation and transformation competence) were not altered. Our results indicate that the role of TspA in adhesion is unlikely to be directly linked to the function of Tfp. TspA was expressed by all N. meningitidis and Neisseria polysaccharea strains examined but not by Neisseria gonorrhoeae or Neisseria lactamica, although sequences with homology to tspA were present in their genomes. In summary, TspA is a highly conserved antigen that is required for optimal adhesion of meningococci to human cells.
Clostridium difficile infection (CDI) is a major cause of hospital-associated, antibiotic-induced diarrhea, which is largely mediated by the production of two large multidomain clostridial toxins, TcdA and TcdB. Both toxins coordinate the action of specific domains to bind receptors, enter cells, and deliver a catalytic fragment into the cytosol. This results in GTPase inactivation, actin disassembly, and cytotoxicity. TcdB in particular has been shown to encode a region covering amino acids 1753 to 1851 that affects epitope exposure and cytotoxicity. Surprisingly, studies here show that several peptides derived from this region, which share the consensus sequence 1769 NVFKGNTISDK 1779 , protect cells from the action of TcdB. One peptide, PepB2, forms multiple interactions with the carboxy-terminal region of TcdB, destabilizes TcdB structure, and disrupts cell binding. We further show that these effects require PepB2 to form a higher-order polymeric complex, a process that requires the central GN amino acid pair. These data suggest that TcdB 1769 -1779 interacts with repeat sequences in the proximal carboxy-terminal domain of TcdB (i.e., the CROP domain) to alter the conformation of TcdB. Furthermore, these studies provide insights into TcdB structure and functions that can be exploited to inactivate this critical virulence factor and ameliorate the course of CDI.IMPORTANCE Clostridium difficile is a leading cause of hospital-associated illness that is often associated with antibiotic treatment. To cause disease, C. difficile secretes toxins, including TcdB, which is a multidomain intracellular bacterial toxin that undergoes conformational changes during cellular intoxication. This study describes the development of peptide-based inhibitors that target a region of TcdB thought to be critical for structural integrity of the toxin. The results show that peptides derived from a structurally important region of TcdB can be used to destabilize the toxin and prevent cellular intoxication. Importantly, this work provides a novel means of toxin inhibition that could in the future develop into a C. difficile treatment. KEYWORDS Clostridium difficile, TcdB, exotoxins, peptidesT cdB is an intracellular bacterial toxin produced by the spore-forming, anaerobic, human pathogen Clostridium difficile (1). This 2,366-amino-acid (aa) protein binds to cell surface receptors (CSPG4, PVRL3, and FZD), undergoes endocytosis, and translocates into the cytosol, where it glucosylates small GTPases (2-5). Small-angle X-ray scattering, electron microscopy, and biochemical analyses indicate that TcdB is organized into 4 domains, with an amino-terminal glucosylation domain (aa 1 to 543), a cysteine-protease domain (aa 544 to 801), a cell entry/translocation domain (aa 802 to 1650), and a carboxyl-terminal cell-binding domain (aa 1651 to 2366) that includes combined repetitive oligopeptide repeats (CROP) from aa 1830 to 2366 (6-15). More recently, the crystal structure of TcdA, a protein that shares sequence and functional identity w...
BackgroundInducible disruption of cilia-related genes in adult mice results in slowly progressive cystic disease, which can be greatly accelerated by renal injury.MethodsTo identify in an unbiased manner modifier cells that may be influencing the differential rate of cyst growth in injured versus non-injured cilia mutant kidneys at a time of similar cyst severity, we generated a single-cell atlas of cystic kidney disease. We conducted RNA-seq on 79,355 cells from control mice and adult-induced conditional Ift88 mice (hereafter referred to as cilia mutant mice) that were harvested approximately 7 months post-induction or 8 weeks post 30-minute unilateral ischemia reperfusion injury.ResultsAnalyses of single-cell RNA-seq data of CD45+ immune cells revealed that adaptive immune cells differed more in cluster composition, cell proportion, and gene expression than cells of myeloid origin when comparing cystic models with one another and with non-cystic controls. Surprisingly, genetic deletion of adaptive immune cells significantly reduced injury-accelerated cystic disease but had no effect on cyst growth in non-injured cilia mutant mice, independent of the rate of cyst growth or underlying genetic mutation. Using NicheNet, we identified a list of candidate cell types and ligands that were enriched in injured cilia mutant mice compared with aged cilia mutant mice and non-cystic controls that may be responsible for the observed dependence on adaptive immune cells during injury-accelerated cystic disease.ConclusionsCollectively, these data highlight the diversity of immune cell involvement in cystic kidney disease.
Clostridioides difficile toxin B (TcdB) is an intracellular toxin responsible for many of the pathologies of C. difficile infection. The two variant forms of TcdB (TcdB1 and TcdB2) share 92% sequence identity but have reported differences in rates of cell entry, autoprocessing, and overall toxicity. This 2,366-amino-acid, multidomain bacterial toxin glucosylates and inactivates small GTPases in the cytosol of target cells, ultimately leading to cell death. Successful cell entry and intoxication by TcdB are known to involve various conformational changes in the protein, including a proteolytic autoprocessing event. Previous studies found that amino acids 1753 to 1852 influence the conformational states of the proximal carboxy-terminal domain of TcdB and could contribute to differences between TcdB1 and TcdB2. In the current study, a combination of approaches was used to identify sequences within the region from amino acids 1753 to 1852 that influence the conformational integrity and cytotoxicity of TcdB2. Four deletion mutants with reduced cytotoxicity were identified, while one mutant, TcdB2 Δ1769 -1787 , exhibited no detectable cytotoxicity. TcdB2 Δ1769 -1787 underwent spontaneous autoprocessing and was unable to interact with CHO-K1 or HeLa cells, suggesting a potential change in the conformation of the mutant protein. Despite the putative alteration in structural stability, vaccination with TcdB2 Δ1769 -1787 induced a TcdB2-neutralizing antibody response and protected against C. difficile disease in a mouse model. These findings indicate that the 19amino-acid region spanning residues 1769 to 1787 in TcdB2 is crucial to cytotoxicity and the structural regulation of autoprocessing and that TcdB2 Δ1769 -1787 is a promising candidate for vaccination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.