The type VI secretion system (T6SS) is the most recently described and least understood of the protein secretion systems of Gram-negative bacteria. It is widely distributed and has been implicated in the virulence of various pathogens, but its mechanism and exact mode of action remain to be defined. Additionally there have been several very recent reports that some T6SSs can target bacteria rather than eukaryotic cells. Serratia marcescens is an opportunistic enteric pathogen, a class of bacteria responsible for a significant proportion of hospital-acquired infections. We describe the identification of a functional T6SS in S. marcescens strain Db10, the first report of type VI secretion by an opportunist enteric bacterium. The T6SS of S. marcescens Db10 is active, with secretion of Hcp to the culture medium readily detected, and is expressed constitutively under normal growth conditions from a large transcriptional unit. Expression of the T6SS genes did not appear to be dependent on the integrity of the T6SS. The S. marcescens Db10 T6SS is not required for virulence in three nonmammalian virulence models. It does, however, exhibit dramatic antibacterial killing activity against several other bacterial species and is required for S. marcescens to persist in a mixed culture with another opportunist pathogen, Enterobacter cloacae. Importantly, this antibacterial killing activity is highly strain specific, with the S. marcescens Db10 T6SS being highly effective against another strain of S. marcescens with a very similar and active T6SS. We conclude that type VI secretion plays a crucial role in the competitiveness, and thus indirectly the virulence, of S. marcescens and other opportunistic bacterial pathogens.
Quorum sensing (QS) in vitro controls production of plant cell wall degrading enzymes (PCWDEs) and other virulence factors in the soft rotting enterobacterial plant pathogen Pectobacterium atrosepticum (Pba). Here, we demonstrate the genome-wide regulatory role of QS in vivo during the Pba–potato interaction, using a Pba-specific microarray. We show that 26% of the Pba genome exhibited differential transcription in a QS (expI-) mutant, compared to the wild-type, suggesting that QS may make a greater contribution to pathogenesis than previously thought. We identify novel components of the QS regulon, including the Type I and II secretion systems, which are involved in the secretion of PCWDEs; a novel Type VI secretion system (T6SS) and its predicted substrates Hcp and VgrG; more than 70 known or putative regulators, some of which have been demonstrated to control pathogenesis and, remarkably, the Type III secretion system and associated effector proteins, and coronafacoyl-amide conjugates, both of which play roles in the manipulation of plant defences. We show that the T6SS and a novel potential regulator, VirS, are required for full virulence in Pba, and propose a model placing QS at the apex of a regulatory hierarchy controlling the later stages of disease progression in Pba. Our findings indicate that QS is a master regulator of phytopathogenesis, controlling multiple other regulators that, in turn, co-ordinately regulate genes associated with manipulation of host defences in concert with the destructive arsenal of PCWDEs that manifest the soft rot disease phenotype.
The Type VI secretion system (T6SS) is widespread among bacterial pathogens and acts as an effective weapon against competitor bacteria and eukaryotic hosts by delivering toxic effector proteins directly into target cells. The T6SS utilises a bacteriophage-like contractile machinery to expel a puncturing device based on a tube of Hcp topped with a VgrG spike, which can be extended by a final tip from a PAAR domain-containing protein. Effector proteins are believed to be delivered by specifically associating with particular Hcp, VgrG or PAAR proteins, either covalently (‘specialised’) or non-covalently (‘cargo’ effectors). Here we used the T6SS of the opportunistic pathogen Serratia marcescens, together with integratecd genetic, proteomic and biochemical approaches, to elucidate the role of specific VgrG and PAAR homologues in T6SS function and effector specificity, revealing new aspects and unexpected subtleties in effector delivery by the T6SS. We identified effectors, both cargo and specialised, absolutely dependent on a particular VgrG for delivery to target cells, and discovered that other cargo effectors can show a preference for a particular VgrG. The presence of at least one PAAR protein was found to be essential for T6SS function, consistent with designation as a ‘core’ T6SS component. We showed that specific VgrG-PAAR combinations are required to assemble a functional T6SS and that the three distinct VgrG-PAAR assemblies in S. marcescens exhibit distinct effector specificity and efficiency. Unexpectedly, we discovered that two different PAAR-containing Rhs proteins can functionally pair with the same VgrG protein. Showing that accessory EagR proteins are involved in these interactions, native VgrG-Rhs-EagR complexes were isolated and specific interactions between EagR and cognate Rhs proteins identified. This study defines an essential yet flexible role for PAAR proteins in the T6SS and highlights the existence of distinct versions of the machinery with differential effector specificity and efficiency of target cell delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.