Overall, our results indicate that epigenetic age acceleration in blood can be observed in PHIV+ adolescents and that these epigenetic changes accompany poorer cognitive functioning.
Childhood maltreatment, including abuse and neglect, may have sustained effects on the integrity and functioning of the brain, alter neurophysiological responsivity later in life, and predispose individuals toward psychiatric conditions involving socioaffective disturbances. This meta-analysis aims to quantify associations between self-reported childhood maltreatment and brain function in response to socioaffective cues in adults. Seventeen functional magnetic resonance imaging studies reporting on data from 848 individuals examined with the Childhood Trauma Questionnaire were included in a meta-analysis of whole-brain findings, or a review of region of interest findings. The spatial consistency of peak activations associated with maltreatment exposure was tested using activation likelihood estimation, using a threshold of p < .05 corrected for multiple comparisons. Adults exposed to childhood maltreatment showed significantly increased activation in the left superior frontal gyrus and left middle temporal gyrus, and decreased activation in the left superior parietal lobule and the left hippocampus. Although hyperresponsivity to socioaffective cues in the amygdala and ventral anterior cingulate cortex in correlation with maltreatment severity is a replicated finding in region of interest studies, null results are reported as well. The findings suggest that childhood maltreatment has sustained effects on brain function into adulthood, and highlight potential mechanisms for conveying vulnerability to development of psychopathology.
Under the influence of genes and a varying environment, human brain structure changes throughout the lifespan. Even in adulthood, when the brain seems relatively stable, individuals differ in the profile and rate of brain changes 1 . Longitudinal studies are crucial to identify genetic and environmental factors that influence the rate of these brain changes throughout development 2 and aging 3 . Inter-individual differences in brain development are associated with general cognitive function 4,5 and risk for psychiatric disorders 6,7 and neurological diseases 8,9 . Genetic factors involved in brain development and aging overlap with those for cognition 10 and risk for neuropsychiatric disorders 11 . A recent cross-sectional study showed brain age to be advanced in several brain disorders. Brain age is an estimate of biological age based on brain structure, which can deviate from chronological age. Several shared loci were found between the genome-wide association study (GWAS) summary statistics for advanced brain age and psychiatric disorders 12 . However, information is still lacking on which genetic variants influence an individual's brain changes throughout life, because this requires longitudinal data. Discovering genetic factors that explain variation between individuals in brain structural changes may reveal key biological pathways that drive normal development and aging and may contribute to identifying disease risk and resilience-a crucial goal given the urgent need for new treatments for aberrant brain development and aging worldwide.As part of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium 13 , the ENIGMA Plasticity Working Group quantified the overall genetic contribution to longitudinal brain changes by combining evidence from multiple twin cohorts across the world 14 . Most global and subcortical brain measures showed genetic influences on change over time, with a higher genetic contribution in the elderly (heritability, 16-42%). Genetic factors that influence longitudinal changes were partially independent of those that influence baseline volumes of brain structures, suggesting that there might be genetic variants that specifically affect the rate of development or aging. However, the genes involved in these processes are still not known, with only a single, small-scale GWAS performed for longitudinal volume change in gray and white matter of the cerebrum, basal ganglia and cerebellum 15 . In this study, we set out to find genetic variants that may influence rates of brain changes over time, using genome-wide analysis in individuals scanned with magnetic resonance imaging (MRI) on more than one occasion. We also aimed to identify references
The South African endemic plant Sceletium tortuosum has a long history of traditional use as a masticatory and medicine by San and Khoikhoi people and subsequently by European colonial farmers as a psychotropic in tincture form. Over the past decade, the plant has attracted increasing attention for its possible applications in promoting a sense of wellbeing and relieving stress in healthy individuals and for treating clinical anxiety and depression. The pharmacological actions of a standardized extract of the plant (Zembrin) have been reported to be dual PDE4 inhibition and 5-HT reuptake inhibition, a combination that has been argued to offer potential therapeutic advantages. Here we tested the acute effects of Zembrin administration in a pharmaco-fMRI study focused on anxiety-related activity in the amygdala and its connected neurocircuitry. In a double-blind, placebo-controlled, cross-over design, 16 healthy participants were scanned during performance in a perceptual-load and an emotion-matching task. Amygdala reactivity to fearful faces under low perceptual load conditions was attenuated after a single 25 mg dose of Zembrin. Follow-up connectivity analysis on the emotion-matching task showed that amygdala–hypothalamus coupling was also reduced. These results demonstrate, for the first time, the attenuating effects of S. tortuosum on the threat circuitry of the human brain and provide supporting evidence that the dual 5-HT reuptake inhibition and PDE4 inhibition of this extract might have anxiolytic potential by attenuating subcortical threat responsivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.