Circadian timekeeping in plants increases photosynthesis and productivity. There are circadian oscillations in the abundance of many chloroplast-encoded transcripts, but it is not known how the circadian clock regulates chloroplast transcription or the photosynthetic apparatus. We show that, in Arabidopsis, nuclear-encoded SIGMA FACTOR5 (SIG5) controls circadian rhythms of transcription of several chloroplast genes, revealing one pathway by which the nuclear-encoded circadian oscillator controls rhythms of chloroplast gene expression. We also show that SIG5 mediates the circadian gating of light input to a chloroplast-encoded gene. We have identified an evolutionarily conserved mechanism that communicates circadian timing information between organelles with distinct genetic systems and have established a new level of integration between eukaryotic circadian clocks and organelles of endosymbiotic origin.
Summary
We investigated the signalling pathways that regulate chloroplast transcription in response to environmental signals. One mechanism controlling plastid transcription involves nuclear‐encoded sigma subunits of plastid‐encoded plastid RNA polymerase. Transcripts encoding the sigma factor SIG5 are regulated by light and the circadian clock. However, the extent to which a chloroplast target of SIG5 is regulated by light‐induced changes in SIG5 expression is unknown. Moreover, the photoreceptor signalling pathways underlying the circadian regulation of chloroplast transcription by SIG5 are unidentified.We monitored the regulation of chloroplast transcription in photoreceptor and sigma factor mutants under controlled light regimes in Arabidopsis thaliana.We established that a chloroplast transcriptional response to light intensity was mediated by SIG5; a chloroplast transcriptional response to the relative proportions of red and far red light was regulated by SIG5 through phytochrome and photosynthetic signals; and the circadian regulation of chloroplast transcription by SIG5 was predominantly dependent on blue light and cryptochrome.Our experiments reveal the extensive integration of signals concerning the light environment by a single sigma factor to regulate chloroplast transcription. This may originate from an evolutionarily ancient mechanism that protects photosynthetic bacteria from high light stress, which subsequently became integrated with higher plant phototransduction networks.
HighlightsN2-Src is a previously uncharacterised neuronal splice variant of C-Src kinase.Tyrosine phosphorylation by C-Src is enhanced by SH3 peptide ligands.Ideal C-Src SH3 ligands do not enhance substrate phosphorylation by N2- or N1-Src kinase.N2-Src is more active than C- and N1-Src in vitro and in cells.N2-Src is likely to have alternative substrates in the brain.
In the mammalian brain the ubiquitous tyrosine kinase, C-Src, undergoes splicing to insert short sequences in the SH3 domain to yield N1- and N2-Src. We and others have previously shown that the N-Srcs have altered substrate specificity and kinase activity compared to C-Src. However, the exact functions of the N-Srcs are unknown and it is likely that N-Src signalling events have been misattributed to C-Src because they cannot be distinguished by conventional Src inhibitors that target the kinase domain. By screening a peptide phage display library, we discovered a novel ligand (PDN1) that targets the unique SH3 domain of N1-Src and inhibits N1-Src in cells. In cultured neurons, PDN1 fused to a fluorescent protein inhibited neurite outgrowth, an effect that was mimicked by shRNA targeting the N1-Src microexon. PDN1 also inhibited L1-CAM-dependent neurite elongation in cerebellar granule neurons, a pathway previously shown to be disrupted in Src−/− mice. PDN1 therefore represents a novel tool for distinguishing the functions of N1-Src and C-Src in neurons and is a starting point for the development of a small molecule inhibitor of N1-Src.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.