Errors in botanical surveying are a common problem. The presence of a species is easily overlooked, leading to false-absences; while misidentifications and other mistakes lead to false-positive observations. While it is common knowledge that these errors occur, there are few data that can be used to quantify and describe these errors. Here we characterise false-positive errors for a controlled set of surveys conducted as part of a field identification test of botanical skill. Surveys were conducted at sites with a verified list of vascular plant species. The candidates were asked to list all the species they could identify in a defined botanically rich area. They were told beforehand that their final score would be the sum of the correct species they listed, but false-positive errors counted against their overall grade. The number of errors varied considerably between people, some people create a high proportion of false-positive errors, but these are scattered across all skill levels. Therefore, a person’s ability to correctly identify a large number of species is not a safeguard against the generation of false-positive errors. There was no phylogenetic pattern to falsely observed species; however, rare species are more likely to be false-positive as are species from species rich genera. Raising the threshold for the acceptance of an observation reduced false-positive observations dramatically, but at the expense of more false negative errors. False-positive errors are higher in field surveying of plants than many people may appreciate. Greater stringency is required before accepting species as present at a site, particularly for rare species. Combining multiple surveys resolves the problem, but requires a considerable increase in effort to achieve the same sensitivity as a single survey. Therefore, other methods should be used to raise the threshold for the acceptance of a species. For example, digital data input systems that can verify, feedback and inform the user are likely to reduce false-positive errors significantly.
Errors in botanical surveying are a common problem. The presence of a species is easily overlooked, leading to false-absences; while misidentifications and other mistakes lead to false-positive observations. While it is common knowledge that these errors occur, there are few data that can be used to quantify and describe these errors. Here we characterise false-positive errors for a controlled set of surveys conducted as part of a field identification test of botanical skill. Surveys were conducted at sites with a verified list of vascular plant species. The candidates were asked to list all the species they could identify in a defined botanically rich area. They were told beforehand that their final score would be the sum of the correct species they listed, but false-positive errors counted against their overall grade. The number of errors varied considerably between people, some people create a high proportion of false-positive errors, but these are scattered across all skill levels. Therefore, a person's ability to correctly identify a large number of species is not a safeguard against the generation of false-positive errors. There was no phylogenetic pattern to falsely observed species, however, rare species are more likely to be falsepositive as are species from species rich genera. Raising the threshold for the acceptance of an observation reduced false-positive observations dramatically, but at the expense of more false negative errors. False-positive errors are higher in field surveying of plants than many people may appreciate. Greater stringency is required before accepting species as present at a site, particularly for rare species. Combining multiple surveys resolves the problem, but requires a considerable increase in effort to achieve the same sensitivity as a single survey. Therefore, other methods should be used to raise the threshold for the acceptance of a species. For example, digital data input systems that can verify, feedback and inform the user are likely to reduce false-positive errors significantly.
Errors in botanical surveying are a common problem. The presence of a species is easily overlooked, leading to false-absences; while misidentifications and other mistakes lead to false-positive observations. While it is common knowledge that these errors occur, there are few data that can be used to quantify and describe these errors. Here we characterise false-positive errors for a controlled set of surveys conducted as part of a field identification test of botanical skill. Surveys were conducted at sites with a verified list of vascular plant species. The candidates were asked to list all the species they could identify in a defined botanically rich area. They were told beforehand that their final score would be the sum of the correct species they listed, but false-positive errors counted against their overall grade. The number of errors varied considerably between people, some people create a high proportion of false-positive errors, but these are scattered across all skill levels. Therefore, a person's ability to correctly identify a large number of species is not a safeguard against the generation of false-positive errors. There was no phylogenetic pattern to falsely observed species, however, rare species are more likely to be falsepositive as are species from species rich genera. Raising the threshold for the acceptance of an observation reduced false-positive observations dramatically, but at the expense of more false negative errors. False-positive errors are higher in field surveying of plants than many people may appreciate. Greater stringency is required before accepting species as present at a site, particularly for rare species. Combining multiple surveys resolves the problem, but requires a considerable increase in effort to achieve the same sensitivity as a single survey. Therefore, other methods should be used to raise the threshold for the acceptance of a species. For example, digital data input systems that can verify, feedback and inform the user are likely to reduce false-positive errors significantly.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.