Vascular growth factors play an important role in maintaining the structure and integrity of the glomerular filtration barrier. In healthy adult glomeruli, the proendothelial survival factors vascular endothelial growth factor-A (VEGF-A) and angiopoietin-1 are constitutively expressed in glomerular podocyte epithelia. We demonstrate that this milieu of vascular growth factors is altered in streptozotocin-induced type 1 diabetic mice, with decreased angiopoietin-1 levels, VEGF-A upregulation, decreased soluble VEGF receptor-1 (VEGFR1), and increased VEGFR2 phosphorylation. This was accompanied by marked albuminuria, nephromegaly, hyperfiltration, glomerular ultrastructural alterations, and aberrant angiogenesis. We subsequently hypothesized that restoration of angiopoietin-1 expression within glomeruli might ameliorate manifestations of early diabetic glomerulopathy. Podocyte-specific inducible repletion of angiopoietin-1 in diabetic mice caused a 70% reduction of albuminuria and prevented diabetes-induced glomerular endothelial cell proliferation; hyperfiltration and renal morphology were unchanged. Furthermore, angiopoietin-1 repletion in diabetic mice increased Tie-2 phosphorylation, elevated soluble VEGFR1, and was paralleled by a decrease in VEGFR2 phosphorylation and increased endothelial nitric oxide synthase Ser 1177 phosphorylation. Diabetes-induced nephrin phosphorylation was also reduced in mice with angiopoietin-1 repletion. In conclusion, targeted angiopoietin-1 therapy shows promise as a renoprotective tool in the early stages of diabetic kidney disease.
1056α -Calcitonin gene-related peptide (αCGRP) is a potent vasodilator 1 and a hypotensive peptide. It is primarily localized to the sensory nervous system, with a perivascular innervation and considered to be the major cardiovascular form, as compared with the structurally similar βCGRP. CGRP acts via a G-protein-coupled receptor (calcitonin-like receptor) when dimerized with a single transmembrane-spanning receptor activity-modifying protein RAMP1 2 signaling via cAMP and other pathways. 3,4 CGRP does not play a primary role in the regulation of basal blood pressure (BP) in normal individuals 5,6 but is suggested to have protective properties, in cardiovascular disease, 7,8 including attenuation of vascular smooth muscle proliferation, 9 hyperplasia, 10,11 and stimulation of endothelial cell proliferation 12 and endothelial progenitor cells. 13 Evidence indicates the importance of CGRP in aggressive models of rodent hypertension that are centered on the kidney. 14,15 By comparison, there is little evidence of detailed analysis involving the ongoing influence of endogenous CGRP on hypertensive mechanisms and vascular remodeling, especially with regard to NO and oxidative stress pathways.Sensory nerve-derived CGRP release is stimulated by mechanisms that include angiotensin II (AngII) and sympathetic nerve reflexes, 3,4 baroreflex sensitivity, 16 and sensory nerve activators. 17,18 We have investigated the AngII hypertension model in wild-type (WT) and αCGRP knockout (αCGRPKO) mice that have similar resting BP. We hypothesized that αCGRP is protective against the onset and development of hypertension, and the aim was to identify mechanisms by which αCGRP is protective in this model. The novel findings show Abstract-α-Calcitonin gene-related peptide (αCGRP) is a vasodilator, but there is limited knowledge of its long-term cardiovascular protective influence. We hypothesized that αCGRP protects against the onset and development of angiotensin II-induced hypertension and have identified protective mechanisms at the vascular level. Wild-type and αCGRP knockout mice that have similar baseline blood pressure were investigated in the angiotensin II hypertension model for 14 and 28 days. αCGRP knockout mice exhibited enhanced hypertension and aortic hypertrophy. αCGRP gene expression was increased in dorsal root ganglia and at the conduit and resistance vessel level of wild-type mice at both time points. βCGRP gene expression was also observed and shown to be linked to plasma levels of CGRP. Mesenteric artery contractile and relaxant responses in vitro and endothelial NO synthase expression were similar in all groups. The aorta exhibited vascular hypertrophy, increased collagen formation, and oxidant stress markers in response to angiotensin II, with highest effects observed in αCGRP knockout mice. Gene and protein expression of endothelial NO synthase was lacking in the aortae after angiotensin II treatment, especially in αCGRP knockout mice. These results demonstrate the ongoing upregulation of αCGRP at the levels...
Obesity induced by Western diets is associated with type 2 diabetes mellitus and cardiovascular diseases, although underlying mechanisms are unclear. We investigated a murine model of diet-induced obesity to determine the effect of transient potential receptor vanilloid 1 (TRPV1) deletion on hypertension and metabolic syndrome. Wild-type and TRPV1 knockout mice were fed normal or high-fat diet from 3 to 15 weeks. High-fat diet-fed mice from both genotypes became obese, with similar increases in body and adipose tissue weights. High-fat diet-fed TRPV1 knockout mice showed significantly improved handling of glucose compared with high-fat diet-fed wild-type mice. Hypertension, vascular hypertrophy, and altered nociception were observed in high-fat diet-fed wild-type but not high-fat diet-fed TRPV1 knockout mice. Wild-type, but not high-fat diet-fed TRPV1 knockout, mice demonstrated remodeling in terms of aortic vascular hypertrophy and increased heart and kidney weight, although resistance vessel responses were similar in each. Moreover, the wild-type mice had significantly increased plasma levels of leptin, interleukin 10 and interleukin 1β, whereas samples from TRPV1 knockout mice did not show significant increases. Our results do not support the concept that TRPV1 plays a major role in influencing weight gain. However, we identified a role of TRPV1 in the deleterious effects observed with high-fat feeding in terms of inducing hypertension, impairing thermal nociception sensitivity, and reducing glucose tolerance. The observation of raised levels of adipokines in wild-type but not TRPV1 knockout mice is in keeping with TRPV1 involvement in stimulating the proinflammatory network that is central to obesity-induced hypertension and sensory neuronal dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.