Cold atmospheric pressure plasma jets (CAPJs) are an emerging technology for the localised treatment of heat sensitive surfaces. Adding humidity to the CAPJ's feed gas yields an effective production of highly reactive intermediate species, such as hydrogen atoms, oxygen atoms, and hydroxyl radicals, among others, which are key species for biomedical applications. This study focusses on the effluent of the CAPJ kINPen, which was operated with argon feed gas and a humidity admixture of 3000 ppm, while a gas curtain was used to limit the diffusion of ambient air into the effluent. The axial and radial density distribution of O and H atoms is measured by means of picosecond two-photon absorption laser induced fluorescence spectroscopy (ps-TALIF). A maximum O atom density of (3.8 ± 0.7) • 10 15 cm −3 and a maximum H atom density of (3.5 ± 0.7) • 10 15 cm −3 are found at the nozzle of the plasma jet.The experimental results are compared to a two-dimensional reacting flow model that is coupled with a local zero-dimensional plasma chemical model. With this model, the main H and O atom production mechanisms are determined to be the dissociation
Cold atmospheric pressure plasma jets make important contributions to a range of fields, such as materials processing and plasma medicine. In order to optimise the effect of those plasma sources, a detailed understanding of the chemical reaction networks is pivotal. However, the small diameter of plasma jets makes diagnostics challenging. A promising approach to obtain absolute number densities is the utilisation of cavity-enhanced absorption spectroscopy methods, by which line-of-sight averaged densities are determined. Here, we present first measurements on how the spatial distribution of HO2 in the effluent of a cold atmospheric pressure plasma jet can be obtained by cavity ring-down spectroscopy in an efficient way. Instead of recording fully wavelength resolved spectra, we will demonstrate that it is sufficient to measure the absorption coefficient at two wavelengths, corresponding to the laser being on and off the molecular resonance. By sampling the effluent from the 1.6 mm diameter nozzle in the radial direction at various axial positions, we determined that the distances over which the HO2 density was distributed were (3.9 ± 0.5) mm and (6.7 ± 0.1) mm at a distance of 2 mm and 10 mm below the nozzle of the plasma jet, respectively. We performed an Abel inversion in order to obtain the spatial distribution of HO2 that is presented along the symmetry axis of the effluent. Based on that localised density, which was (4.8 ± 0.6) ⋅ 1014 cm−3 at the maximum, we will discuss the importance of the plasma zone for the production of HO2.
The Ar(3P2) metastable density in the effluent of the cold atmospheric pressure plasma jet kINPen was investigated as a function of the feed gas humidity, the gas curtain composition, and the distance from the nozzle by means of laser atomic absorption spectroscopy. The filamentary character of the plasma jet was considered as the absorption signals are from single individual events. From the effective lifetime, the quenching coefficient for Ar(3P2) by water was determined. A maximum Ar(3P2) density of (6.0±0.7)×1013 cm−3 was obtained close to the nozzle for a feed gas humidity of 20 ppm. The densities near the nozzle decreased inversely proportional to the water content in the feed gas leveling off at approximately 1×1013 cm−3, independently from the gas curtain composition. With the addition of water to the feed gas, the excitation dynamics changed, and the production and lifetime of Ar(3P2) was reduced. The impact of Ar(3P2) on the reactive species composition in the effluent was found to be smaller than within the plasma zone inside the plasma jet device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.