Damage caused by flood events is expected to increase in the coming decades driven by increased land use pressures and climate change impacts. The insurance sector needs accurate and efficient loss adjustment methodologies for flood events. These can include remote sensing approaches that enable the rapid estimation of (i) damage caused to property as well as (ii) the number of affected properties. Approaches based on traditional remote sensing methods have limitations associated with low-cloud cover presence, oblique viewing angles, and the resolution of the geomatic products obtained. Unmanned aerial vehicles (UAVs) are emerging as a potential tool for post-event assessment and provide a means of overcoming the limitations listed above. This paper presents a UAV-based loss-adjustment framework for the estimation of direct tangible losses to residential properties affected by flooding. For that purpose, features indicating damage to property were mapped from UAV imagery collected after the Desmond storm (5 and 6 December 2015) over Cockermouth (Cumbria, UK). Results showed that the proposed framework provided an accuracy of 84% in the detection of direct tangible losses compared with on-the-ground household-by-household assessment approaches. Results also demonstrated the importance of pluvial and, from eye witness reports, lateral flow flooding, with a total of 168 properties identified as flooded falling outside the fluvial flood extent. The direct tangible losses associated with these additional properties amounted to as high as £3.6 million. The damage-reducing benefits of resistance measures were also calculated and amounted to around £4 million. Differences in direct tangible losses estimated using the proposed UAV approach and the more classic loss-adjustment methods relying on the fluvial flood extent was around £1 million—the UAV approach providing the higher estimate. Overall, the study showed that the proposed UAV approach could make a significant contribution to improving the estimation of the costs associated with urban flooding, and responses to flooding events, at national and international levels.
Radar backscatter from forest canopies is related to forest cover, canopy structure and aboveground biomass (AGB). The S-band frequency (3.1-3.3 GHz) lies between the longer L-band (1-2 GHz) and the shorter C-band (5-6 GHz) and has been insufficiently studied for forest applications due to limited data availability. In anticipation of the British built NovaSAR-S satellite mission, this study evaluates the benefits of polarimetric S-band SAR for forest biophysical properties. To understand the scattering mechanisms in forest canopies at S-band the Michigan Microwave Canopy Scattering (MIMICS-I) radiative transfer model was used. S-band backscatter was found to have high sensitivity to the forest canopy characteristics across all polarisations and incidence angles. This sensitivity originates from ground/trunk interaction as the dominant scattering mechanism related to broadleaved species for co-polarised mode and specific incidence angles. The study was carried out in the temperate mixed forest at Savernake Forest and Wytham Woods in southern England, where airborne S-band SAR imagery and field data are available from the recent AirSAR campaign. Field data from the test sites revealed wide ranges of forest parameters, including average canopy height (6-23 m), diameter at breast-height (7-42 cm), basal area (0.2-56 m 2 /ha), stem density (20-350 trees/ha) and woody biomass density (31-520 t/ha). S-band backscatter-biomass relationships suggest increasing backscatter sensitivity to forest AGB with least error between 90.63 and 99.39 t/ha and coefficient of determination (r 2 ) between 0.42 and 0.47 for the co-polarised channel at 0.25 ha resolution. The conclusion is that S-band SAR data such as from NovaSAR-S is suitable for monitoring forest aboveground biomass less than 100 t/ha at 25 m resolution in low to medium incidence angle range.
Assessments of forest cover, forest carbon stocks and carbon emissions from deforestation and degradation are increasingly important components of sustainable resource management, for combating biodiversity loss and in climate mitigation policies. Satellite remote sensing provides the only means for mapping global forest cover regularly. However, forest classification with optical data is limited by its insensitivity to three-dimensional canopy structure and cloud cover obscuring many forest regions. Synthetic Aperture Radar (SAR) sensors are increasingly being used to mitigate these problems, mainly in the L-, C-and X-band domains of the electromagnetic spectrum. S-band has not been systematically studied for this purpose. In anticipation of the British built NovaSAR-S satellite mission, this study evaluates the benefits of polarimetric S-band SAR for forest characterisation. The Michigan Microwave Canopy Scattering (MIMICS-I) radiative transfer model is utilised to understand the scattering mechanisms in forest canopies at S-band. The MIMICS-I model reveals strong S-band backscatter sensitivity to the forest canopy in comparison to soil characteristics across all polarisations and incidence angles. Airborne S-band SAR imagery over the temperate mixed forest of Savernake Forest in southern England is analysed for its information content. Based on the modelling results, S-band HH-and VV-polarisation radar backscatter and the Radar Forest Degradation Index (RFDI) are used in a forest/non-forest Maximum Likelihood classification at a spatial resolution of 6 m (70% overall accuracy, κ = 0.41) and 20 m (63% overall accuracy, κ = 0.27). The conclusion is that S-band SAR such as from NovaSAR-S is likely to be suitable for monitoring forest cover and its changes.
This paper describes and illustrates methods for quantifying regional differences in land use/land cover changes. A series of approaches are used to analyse differences in land cover change from data held in change matrices. These are contingency tables and are commonly used in remote sensing to describe the spatial coincidence of land cover recorded over two time periods. Comparative analyses of regional change are developed using odds ratios to analyse data in two regions. These approaches are extended using generalised linear models to analyse data for three or more regions. A generalised Poisson regression model is used to generate a comparative index of change based on differences in change likelihoods. Mosaic plots are used to provide a visual representation of statistically surprising land use losses and gains. The methods are explored using a hypothetical but tractable dataset and then applied to a national case study of coastal land use changes over 50 years conducted for the National Trust. The suitability of the different approaches to different types of problem and the potential for their application to land cover accuracy measures are briefly discussed.
Soil moisture (SM) products derived from passive satellite missions are playing an increasingly important role in agricultural applications, especially crop monitoring and disaster warning. Evaluating the dependability of satellite-derived soil moisture products on a large scale is crucial. In this study, we assessed the level 2 (L2) SM product from the Chinese Fengyun-3C (FY-3C) radiometer against in-situ measurements collected from the Chinese Automatic Soil Moisture Observation Stations (CASMOS) during a one-year period from 1 January 2016 to 31 December 2016 across Henan in China. In contrast, we also investigated the skill of the Advanced Microwave Scanning Radiometer 2 (AMSR2) and Soil Moisture Active/Passive (SMAP) SM products simultaneously. Four statistical parameters were used to evaluate these products’ reliability: mean difference, root-mean-square error (RMSE), unbiased RMSE (ubRMSE), and the correlation coefficient. Our assessment results revealed that the FY-3C L2 SM product generally showed a poor correlation with the in-situ SM data from CASMOS on both temporal and spatial scales. The AMSR2 L3 SM product of JAXA (Japan Aerospace Exploration Agency) algorithm had a similar level of skill as FY-3C in the study area. The SMAP L3 SM product outperformed the FY-3C temporally but showed lower performance in capturing the SM spatial variation. A time-series analysis indicated that the correlations and estimated error varied systematically through the growing periods of the key crops in our study area. FY-3C L2 SM data tended to overestimate soil moisture during May, August, and September when the crops reached maximum vegetation density and tended to underestimate the soil moisture content during the rest of the year. The comparison between the statistical parameters and the ground vegetation water content (VWC) further showed that the FY-3C SM product performed much better under a low VWC condition (<0.3 kg/m2) than a high VWC condition (>0.3 kg/m2), and the performance generally decreased with increased VWC. To improve the accuracy of the FY-3C SM product, an improved algorithm that can better characterize the variations of the ground VWC should be applied in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.