In human beings, there are five reported variants of concern of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). However, in contrast to human beings, descriptions of infections of animals with specific variants are still rare. The aim of this study is to systematically investigate SARS-CoV-2 infections in companion animals in close contact with SARS-CoV-2-positive owners (“COVID-19 households”) with a focus on the Delta variant. Samples, obtained from companion animals and their owners were analyzed using a real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and next-generation sequencing (NGS). Animals were also tested for antibodies and neutralizing activity against SARS-CoV-2. Eleven cats and three dogs in nine COVID-19-positive households were RT-qPCR and/or serologically positive for the SARS-CoV-2 Delta variant. For seven animals, the genetic sequence could be determined. The animals were infected by one of the pangolin lineages B.1.617.2, AY.4, AY.43 and AY.129 and between zero and three single-nucleotide polymorphisms (SNPs) were detected between the viral genomes of animals and their owners, indicating within-household transmission between animal and owner and in multi-pet households also between the animals. NGS data identified SNPs that occur at a higher frequency in the viral sequences of companion animals than in viral sequences of humans, as well as SNPs, which were exclusively found in the animals investigated in the current study and not in their owners. In conclusion, our study is the first to describe the SARS-CoV-2 Delta variant transmission to animals in Switzerland and provides the first-ever description of Delta-variant pangolin lineages AY.129 and AY.4 in animals. Our results reinforce the need of a One Health approach in the monitoring of SARS-CoV-2 in animals.
Background: Bovine papillomavirus types 1 and 2 (BPV1; BPV2) are accepted aetiological agents of equine sarcoids. Recently, genetically similar BPV13 has been identified from equine sarcoids in Brazil.Objectives: To determine whether BPV13 DNA can be also found in sarcoid-affected horses in Austria, and donkeys in Northern Italy and the UK, and should hence be considered in the context of vaccinemediated sarcoid prevention.
Recent evidence confirming cat-to-human SARS-CoV-2 transmission has highlighted the importance of monitoring infection in domestic cats. Although the effects of SARS-CoV-2 infection on feline health are poorly characterized, cats have close contact with humans, and with both domesticated and wild animals. Accordingly, they could act as a reservoir of infection, an intermediate host and a source of novel variants. To investigate the spread of the virus in the cat population, serum samples were tested for SARS-CoV-2 antibodies by ELISA and a pseudotype-based virus neutralization assay, designed to detect exposure to variants known to be circulating in the human population. Overall seroprevalence was 3.2%, peaking at 5.3% in autumn 2021. Variant-specific neutralizing antibody responses were detected with titers waning over time. The variant-specific response in the feline population correlated with and trailed the variants circulating in the human population, indicating multiple ongoing human-to-cat spill-over events.
Suspensions of viable urothelial cells (UC) isolated from patient bladder biopsies often contain considerable amounts of extraneous materials comprised of cellular debris, dead and dying UC, and red blood cells. We have consistently observed an inversely proportional relationship between UC attachment efficiency and the amount of extraneous materials in the suspension; viable UC cell attachment efficiency decreases as the amount of extraneous materials in the cell suspension increases. Processing the initial cell isolate to reduce the amount of extraneous materials can enrich for viable UC capable of attaching and proliferating in ex vivo cultures. In this report, we describe the isolation of an enriched population of viable UC from nonneurogenic and neurogenic bladder tissue biopsies using iodixanol self-generated density gradients (OptiPrep), and characterization by trypan blue exclusion, fluorescence-activated cell sorting, immunofluorescence, and growth kinetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.