Boosting myocardial resistance to acute as well as chronic ischemic damage would ameliorate the detrimental effects of numerous cardiac pathologies and reduce the probability of transition to heart failure. Experimental cardiology has pointed to ischemic and pharmacological pre- as well as post-conditioning as potent acute cardioprotective manipulations. Additional exciting experimental strategies include the induction of true regenerative and/or angiogenic responses to the damaged heart, resulting in sustained structural and functional beneficial effects. Fibroblast growth factor-2 (FGF-2), an endogenous multifunctional protein with strong affinity for the extracellular matrix and basal lamina and well-documented paracrine, autocrine and intracellular modes of action, has been shown over the years to exert acute and direct pro-survival effects, irrespectively of whether it is administered before, during or after an ischemic insult to the heart. FGF-2 is also a potent angiogenic protein and a crucial agent for the proliferation, expansion, and survival of several cell types including those with stem cell properties. Human clinical trials have pointed to a good safety record for this protein. In this review, we will present a case for the low molecular weight isoform of fibroblast growth factor-2 (lo-FGF-2) as a very promising therapeutic agent to achieve powerful acute as well as sustained benefits for the heart, due to its cytoprotective and regenerative properties.
Fibroblast growth factor 2 (FGF-2), a multifunctional polypeptide that affects cell growth and differentiation and becomes upregulated by stress, is expressed as AUG-initiated 18 kDa FGF-2 or CUG-initiated 21-34 kDa (hi-FGF-2) isoforms. Animal models have provided strong evidence that FGF-2 is essential for the manifestation of overload- and angiotensin-induced cardiac hypertrophy. Nevertheless, studies to-date have not discriminated between the activities of 18 kDa FGF-2 and hi-FGF-2. Our recent work has pointed to a potent pro-hypertrophic effect of added hi-FGF-2, and a pro-apoptotic effect of sustained intracrine hi-FGF-2 signaling. In the future, it will be important to differentiate between the activities of the different FGF-2 isoforms in the context of adaptive and maladaptive myocardial hypertrophy and heart failure. Based on all available evidence, we propose that while the 18-kDa FGF-2 is a component of an adaptive trophic response, a switch to hi-FGF-2 accumulation would exacerbate hypertrophy and contribute to cell death, thus driving the myocardium towards a maladaptive phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.