Rheumatoid arthritis is a chronic disease affecting the joints. Treatment can include immobilisation of the affected joint with a custom-fitting splint, which is typically fabricated by hand from low temperature thermoplastic, but the approach poses several limitations. This study focused on the evaluation, by finite element analysis, of additive manufacturing techniques for wrist splints in order to improve upon the typical splinting approach. An additive manufactured/3D printed splint, specifically designed to be built using Objet Connex multi-material technology and a virtual model of a typical splint, digitised from a real patient-specific splint using three-dimensional scanning, were modelled in computer-aided design software. Forty finite element analysis simulations were performed in flexion-extension and radial-ulnar wrist movements to compare the displacements and the stresses. Simulations have shown that for low severity loads, the additive manufacturing splint has 25%, 76% and 27% less displacement in the main loading direction than the typical splint in flexion, extension and radial, respectively, while ulnar values were 75% lower in the traditional splint. For higher severity loads, the flexion and extension movements resulted in deflections that were 24% and 60%, respectively, lower in the additive manufacturing splint. However, for higher severity loading, the radial defection values were very similar in both splints and ulnar movement deflection was higher in the additive manufacturing splint. A physical prototype of the additive manufacturing splint was also manufactured and was tested under normal conditions to validate the finite element analysis data. Results from static tests showed maximum displacements of 3.46, 0.97, 3.53 and 2.51 mm flexion, extension, radial and ulnar directions, respectively. According to these results, the present research argues that from a technical point of view, the additive manufacturing splint design stands at the same or even better level of performance in displacements and stress values in comparison to the typical low temperature thermoplastic approach and is therefore a feasible approach to splint design and manufacture.
Through school-sponsored career and technical education programs in New Jersey, students work part-time during or after school in paid and unpaid structured learning experiences regulated by the New Jersey Department of Education. Schools submit information on "reportable incidents," injury or illness resulting in physician treatment. Incidents including reported use of personal protective equipment (PPE) were assessed; 1,600 incident reports (1999 to 2008) were received. Attributes such as type and severity, body parts affected, and PPE use for incidents occurring at school among students grades 9 to 12 or labeled as "adults" during school hours (n = 285) were analyzed. Older teens incurred more injuries. PPE use was consistently low across age and gender. Students most frequently experienced knife injuries involving fingers and hands. Results identified potential injury determinants and training and intervention topics such as PPE, and support development of an enhanced reporting form.
Investigations of young workers, including limited surveys in supervised school settings, suggested their elevated injury risk. This study identified factors contributing to cuts-lacerations among adolescents in New Jersey secondary school career, technical, and vocational education programs. Of 1,772 injuries reported between December 1, 1998, and September 1, 2010, 777 (44%) were cuts-lacerations; analyses focused on 224 reports (n = 182 post-exclusions) submitted after fall 2005 in three career groups-Food, Hospitality & Tourism (FH&T) (n = 71), Manufacturing & Construction (M&C) (n = 84), and Automotive & Transportation (A&T) (n = 27). Most students were "struck by" tools or hard surfaces (n = 93, 51%); 63 cuts were from knives in FH&T. In M&C, most cuts-lacerations were caused by hand-held tools (n = 18) and being "struck against/by" or "caught between hard surfaces" (n = 19). Males reported more cuts-lacerations (n = 145), most commonly among 11th graders (n = 54) and ages 16 to 17 years (n = 79). Fingers (n = 117) were most often injured, usually by cutting tools (n = 83). Training, supervision, and appropriate equipment, and further assessments of "struck by" and "pinch point" hazards, are needed.
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.
Secondary school students in career, technical, and vocational education (CTE) programs include minors aged ≤17 years. These students enter the workforce starting at age 18 as young adults, and specifically in cosmetology after completing the State of New Jersey mandated 2-part licensing exam (theory and practical). The New Jersey Safe Schools Task Force 2010-2012 focused on potential safety and health (S&H) risks encountered by minors training in cosmetology. We conducted a stakeholderdriven participatory process with relevant state and federal agencies, private sector partners, teachers, administrators, and students from 1-in-3 of 21 county CTE school districts. We developed and disseminated Web pages (http://www. njsafeschools.org/Cosmetology.htm) with science-based information, materials such as "Right to Know" brochures in multiple languages (English, Spanish), and student-designed educational posters. Resources highlight S&H issues such as chemical exposures, including known environmental and occupational asthma triggers and respiratory irritants, for example, formaldehyde and volatile organic compounds. Asthma education professionals working in clinical management of chronic respiratory diseases can increase self-awareness of S&H in cosmetology. They can then help inform younger patients/workers with asthma, teachers, older employees, and managers/owners of hair, nail, and skin care salons of potential asthma triggers. The goal is to minimize exposures (S&H risks) among these professionals and their clients (general public).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.