We propose a new problem we refer to as goal recognitiondesign (grd), in which we take a domain theory and a set ofgoals and ask the following questions: to what extent do theactions performed by an agent within the model reveal its objective, and what is the best way to modify a model so thatany agent acting in the model reveals its objective as early aspossible. Our contribution is the introduction of a new measure we call worst case distinctiveness (wcd) with which weassess a grd model. The wcd represents the maximal lengthof a prefix of an optimal path an agent may take within a system before it becomes clear at which goal it is aiming. Tomodel and solve the grd problem we choose to use the models and tools from the closely related field of automated planning. We present two methods for calculating the wcd of agrd model, one of which is based on a novel compilation to aclassical planning problem. We then propose a way to reducethe wcd of a model by limiting the set of available actions anagent can perform and provide a method for calculating theoptimal set of actions to be removed from the model. Our empirical evaluation shows the proposed solution to be effectivein computing and minimizing wcd.
We present the Equi-Reward Utility Maximizing Design (ER-UMD) problem for redesigning stochastic environments to maximize agent performance. ER-UMD fits well contemporary applications that require offline design of environments where robots and humans act and cooperate. To find an optimal modification sequence we present two novel solution techniques: a compilation that embeds design into a planning problem, allowing use of off-the-shelf solvers to find a solution, and a heuristic search in the modifications space, for which we present an admissible heuristic. Evaluation shows the feasibility of the approach using standard benchmarks from the probabilistic planning competition and a benchmark we created for a vacuum cleaning robot setting.
Goal recognition design involves the offline analysis of goal recognition models by formulating measures that assess the ability to perform goal recognition within a model and finding efficient ways to compute and optimize them. In this work we present goal recognition design for non-optimal agents, which extends previous work by accounting for agents that behave non-optimally either intentionally or naıvely. The analysis we present includes a new generalized model for goal recognition design and the worst case distinctiveness (wcd) measure. For two special cases of sub-optimal agents we present methods for calculating the wcd, part of which are based on novel compilations to classical planning problems. Our empirical evaluation shows the proposed solutions to be effective in computing and optimizing the wcd.
Goal recognition design (GRD) facilitates understanding the goals of acting agents through the analysis and redesign of goal recognition models, thus offering a solution for assessing and minimizing the maximal progress of any agent in the model before goal recognition is guaranteed. In a nutshell, given a model of a domain and a set of possible goals, a solution to a GRD problem determines (1) the extent to which actions performed by an agent within the model reveal the agent’s objective; and (2) how best to modify the model so that the objective of an agent can be detected as early as possible. This approach is relevant to any domain in which rapid goal recognition is essential and the model design can be controlled. Applications include intrusion detection, assisted cognition, computer games, and human-robot collaboration. A GRD problem has two components: the analyzed goal recognition setting, and a design model specifying the possible ways the environment in which agents act can be modified so as to facilitate recognition. This work formulates a general framework for GRD in deterministic and partially observable environments, and offers a toolbox of solutions for evaluating and optimizing model quality for various settings. For the purpose of evaluation we suggest the worst case distinctiveness (WCD) measure, which represents the maximal cost of a path an agent may follow before its goal can be inferred by a goal recognition system. We offer novel compilations to classical planning for calculating WCD in settings where agents are bounded-suboptimal. We then suggest methods for minimizing WCD by searching for an optimal redesign strategy within the space of possible modifications, and using pruning to increase efficiency. We support our approach with an empirical evaluation that measures WCD in a variety of GRD settings and tests the efficiency of our compilation-based methods for computing it. We also examine the effectiveness of reducing WCD via redesign and the performance gain brought about by our proposed pruning strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.