Even when successfully surviving an infection, a host often fails to eliminate a pathogen completely and may sustain substantial pathogen burden for the remainder of its life. Using systemic bacterial infection in Drosophila melanogaster, we characterize chronic infection by three bacterial species from different genera - Providencia rettgeri, Serratia marcescens, and Enterococcus faecalis–following inoculation with a range of doses. To assess the consequences of these chronic infections, we determined the expression of antimicrobial peptide genes, survival of secondary infection, and starvation resistance after one week of infection. While higher infectious doses unsurprisingly lead to higher risk of death, they also result in higher chronic bacterial loads among the survivors for all three infections. All three chronic infections caused significantly elevated expression of antimicrobial peptide genes at one week post-infection and provided generalized protection again secondary bacterial infection. Only P. rettgeri infection significantly influenced resistance to starvation, with persistently infected flies dying more quickly under starvation conditions relative to controls. These results suggest that there is potentially a generalized mechanism of protection against secondary infection, but that other impacts on host physiology may depend on the specific pathogen. We propose that chronic infections in D. melanogaster could be a valuable tool for studying tolerance of infection, including impacts on host physiology and behavior.
The fruit fly Drosophila melanogaster is one of the premier model organisms for studying the function and evolution of immune defense. Many aspects of innate immunity are conserved between insects and mammals, and since Drosophila can readily be genetically and experimentally manipulated, they are powerful for studying immune system function and the physiological consequences of disease. The procedure demonstrated here allows infection of flies by introduction of bacteria directly into the body cavity, bypassing epithelial barriers and more passive forms of defense and allowing focus on systemic infection. The procedure includes protocols for the measuring rates of host mortality, systemic pathogen load, and degree of induction of the host immune system. This infection procedure is inexpensive, robust and quantitatively repeatable, and can be used in studies of functional genetics, evolutionary life history, and physiology.
The route of infection can profoundly affect both the progression and outcome of disease. We investigated differences in Drosophila melanogaster defense against infection after bacterial inoculation into two sites-the abdomen and the thorax. Thorax inoculation results in increased bacterial proliferation and causes high mortality within the first few days of infection. In contrast, abdomen inoculation results in minimal mortality and lower bacterial loads than thorax inoculation. Inoculation into either site causes systemic infection. Differences in mortality and bacterial load are due to injury of the thorax and can be recapitulated by abdominal inoculation coupled with aseptic wounding of the thorax. This altered resistance appears to be independent of classical immune pathways and opens new avenues of research on the role of injury during defense against infection.
Carotenoid pigments produce most red, orange and yellow colours in vertebrates. This coloration can serve as an honest signal of quality that mediates social and mating interactions, but our understanding of the underlying mechanisms that control carotenoid signal production, including how different physiological pathways interact to shape and maintain these signals, remains incomplete. We investigated the role of testosterone in mediating gene expression associated with a red plumage sexual signal in red-backed fairywrens ( Malurus melanocephalus ). In this species, males within a single population can flexibly produce either red/black nuptial plumage or female-like brown plumage. Combining correlational analyses with a field-based testosterone implant experiment and quantitative polymerase chain reaction, we show that testosterone mediates expression of carotenoid-based plumage in part by regulating expression of CYP2J19 , a ketolase gene associated with ketocarotenoid metabolism and pigmentation in birds. This is, to our knowledge, the first time that hormonal regulation of a specific genetic locus has been linked to carotenoid production in a natural context, revealing how endocrine mechanisms produce sexual signals that shape reproductive success.
Seasonally breeding animals often exhibit different social structures during non-breeding and breeding periods that coincide with seasonal environmental variation and resource abundance. However, we know little about the environmental factors associated with when seasonal shifts in social structure occur. This lack of knowledge contrasts with our well-defined knowledge of the environmental cues that trigger a shift to breeding physiology in seasonally breeding species. Here, we identified some of the main environmental factors associated with seasonal shifts in social structure and initiation of breeding in the red-backed fairywren (Malurus melanocephalus), an Australian songbird. Social network analyses revealed that social groups, which are highly territorial during the breeding season, interact in social “communities” on larger home ranges during the non-breeding season. Encounter rates among non-breeding groups were related to photoperiod and rainfall, with shifting photoperiod and increased rainfall associated with a shift toward territorial breeding social structure characterized by reductions in home range size and fewer encounters among non-breeding social groups. Similarly, onset of breeding was highly seasonal and was also associated with non-breeding season rainfall, with greater rainfall leading to earlier breeding. These findings reveal that for some species, the environmental factors associated with the timing of shifts in social structure across seasonal boundaries can be similar to those that determine timing of breeding. This study increases our understanding of the environmental factors associated with seasonal variation in social structure and how the timing of these shifts may respond to changing climates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.