Chloroethenes like trichloroethene (TCE) are prevalent environmental contaminants, which may be degraded through reductive dechlorination. Chemical models such as cobalamine (vitamin B12) and its simplified analogue cobaloxime have served to mimic microbial reductive dechlorination. To test whether in vitro and in vivo mechanisms agree, we combined carbon and chlorine isotope measurements of TCE. Degradation-associated enrichment factors ε(carbon) and ε(chlorine) (i.e., molecular-average isotope effects) were -12.2‰ ± 0.5‰ and -3.6‰ ± 0.1‰ with Geobacter lovleyi strain SZ; -9.1‰ ± 0.6‰ and -2.7‰ ± 0.6‰ with Desulfitobacterium hafniense Y51; -16.1‰ ± 0.9‰ and -4.0‰ ± 0.2‰ with the enzymatic cofactor cobalamin; -21.3‰ ± 0.5‰ and -3.5‰ ± 0.1‰ with cobaloxime. Dual element isotope slopes m = Δδ(13)C/ Δδ(37)Cl ≈ ε(carbon)/ε(chlorine) of TCE showed strong agreement between biotransformations (3.4 to 3.8) and cobalamin (3.9), but differed markedly for cobaloxime (6.1). These results (i) suggest a similar biodegradation mechanism despite different microbial strains, (ii) indicate that transformation with isolated cobalamin resembles in vivo transformation and (iii) suggest a different mechanism with cobaloxime. This model reactant should therefore be used with caution. Our results demonstrate the power of two-dimensional isotope analyses to characterize and distinguish between reaction mechanisms in whole cell experiments and in vitro model systems.
Cobalt-mediated dehalogenation reactions, specifically those that employ cobalamin, have attracted particular attention because these complexes rapidly degrade tetrachloroethylene (PCE) and trichloroethylene (TCE), which are common groundwater contaminants. Although questions remain about the relative importance of several pathways, both radicals and organometallic intermediates, specifically chlorovinyl complexes, play an important role in these processes. This Perspective highlights recent studies focused on elucidating the mechanism of chloroethylene degradation, including experimental studies on PCE and TCE dechlorination, computational studies, preparation of model complexes, and the study of model catalytic systems.
The phototransformation of triclosan has been a matter of longstanding interest due to both its prevalence in the environment and the discovery of 2,8-dichlorodibenzodioxin as a photoproduct. In this study, photolysis of triclosan resulted in several primary photoproducts including the following: 2,8-dichlorodibenzodioxin (4%), 4,5'-dichloro-[1,1'-biphenyl]-2,2'-diol (10%), 5-chloro-2-(4-chlorophenoxy)phenol (0.5%), and 2,4-dichlorophenol (7%). Trapping studies using d8-isopropanol showed deuterium incorporation in 5-chloro-2-(4-chlorophenoxy)phenol, providing strong evidence for the involvement of organic radicals in this reaction. Density functional calculations of the excited states of triclosan support the involvement of a radical intermediate in the mechanisms responsible for the dioxin, biphenyl, and phenoxyphenol photoproducts. The pathways for C-Cl bond cleavage and cyclization reactions are discussed.
Chlorinated ethenes (CEs) such as perchloroethylene, trichloroethylene and dichloroethylene are notorious groundwater contaminants. Although reductive dehalogenation is key to their environmental and engineered degradation, underlying reaction mechanisms remain elusive. Outer-sphere reductive single electron transfer (OS-SET) has been proposed for such different processes as Vitamin B-dependent biodegradation and zerovalent metal-mediated dehalogenation. Compound-specific isotope effect (C/C, Cl/Cl) analysis offers a new opportunity to test these hypotheses. Defined OS-SET model reactants (CO radical anions, S-doped graphene oxide in water) caused strong carbon (ε = -7.9‰ to -11.9‰), but negligible chlorine isotope effects (ε = -0.12‰ to 0.04‰) in CEs. Greater chlorine isotope effects were observed in CHCl (ε = -7.7‰, ε = -2.6‰), and in CEs when the exergonicity of C-Cl bond cleavage was reduced in an organic solvent (reaction with arene radical anions in glyme). Together, this points to dissociative OS-SET (SET to a σ* orbital concerted with C-Cl breakage) in alkanes compared to stepwise OS-SET (SET to a π* orbital followed by C-Cl cleavage) in ethenes. The nonexistent chlorine isotope effects of chlorinated ethenes in all aqueous OS-SET experiments contrast strongly with pronounced Cl isotope fractionation in all natural and engineered reductive dehalogenations reported to date suggesting that OS-SET is an exception rather than the rule in environmental transformations of chlorinated ethenes.
Despite its wide use as a veterinary pharmaceutical, environmental fate data is lacking for altrenogest, a potent synthetic progestin. Here, it is reported that direct photolysis of altrenogest under environmentally relevant conditions was extremely efficient and rapid (half-life ∼25 s). Photolysis rates (observed rate constant kobs = 2.7 ± 0.2 × 10(-2) s(-1)) were unaffected by changes in pH or temperature but were sensitive to oxygen concentrations (N2-saturated kobs = 9.10 ± 0.32 × 10(-2) s(-1); O2-saturated kobs = 1.38 ± 0.11 × 10(-2) s(-1)). The primary photoproduct was identified as an isomer formed via an internal 2 + 2 cycloaddition reaction; the triplet lifetime (8.4 ± 0.2 μs) and rate constant (8 × 10(4) s(-1)) of this reaction were measured using transient absorption spectroscopy. Subsequent characterization determined that this primary cycloaddition photoproduct undergoes photohydration. The resultant photostable secondary photoproducts are subject to thermal dehydration in dark conditions, leading to reversion to the primary cycloaddition photoproduct on a time scale of hours to days, with the photohydration and dehydration repeatable over several light/dark cycles. This dehydration reaction occurs more rapidly at higher temperatures and is also accelerated at both high and low pH values. In vitro androgen receptor (AR)-dependent gene transcriptional activation cell assays and in silico nuclear hormone receptor screening revealed that certain photoproducts retain significant androgenic activity, which has implications for exposure risks associated with the presence and cycling of altrenogest and its photoproducts in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.