This paper reports the IIT-TUDA participation in the SemEval 2016 shared Task 5 of Aspect Based Sentiment Analysis (ABSA) for subtask 1. We describe our system incorporating domain dependency graph features, distributional thesaurus and unsupervised lexical induction using an unlabeled external corpus for aspect based sentiment analysis. Overall, we submitted 29 runs, covering 7 languages and 4 different domains. Our system is placed first in sentiment polarity classification for the English laptop domain, Spanish and Turkish restaurant reviews, and opinion target expression for Dutch and French in restaurant domain, and scores in medium ranks for aspect category identification and opinion target extraction.
In this paper we present the system for Answer Selection and Ranking in Community Question Answering, which we build as part of our participation in SemEval-2017 Task 3. We develop a Support Vector Machine (SVM) based system that makes use of textual, domain-specific, wordembedding and topic-modeling features. In addition, we propose a novel method for dialogue chain identification in comment threads. Our primary submission won subtask C, outperforming other systems in all the primary evaluation metrics. We performed well in other English subtasks, ranking third in subtask A and eighth in subtask B. We also developed open source toolkits for all the three English subtasks by the name cQARank 1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.